-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscript_accuracy_calc_Visium.R
66 lines (54 loc) · 2.82 KB
/
script_accuracy_calc_Visium.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
library(tidyr)
library(reshape2)
library(Seurat)
#adjust filepaths
nn <- read.csv("~/BA/images Visium/nn_scores.csv", row.names=1)[,4]
snn <- read.csv("~/BA/images Visium/snn_scores.csv", row.names=1)[,4]
nn_spatial <- read.csv("~/BA/images Visium/nn_spatial_scores.csv", row.names=1)[,16]
snn_spatial <- read.csv("~/BA/images Visium/snn_spatial_scores.csv", row.names=1)[,16]
union <- read.csv("~/BA/images Visium/union_scores.csv", row.names=1)[,4]
inter <- read.csv("~/BA/images Visium/inter_snn_scores.csv", row.names=1)[,4]
spatial <- read.csv("~/BA/images Visium/spatial_scores.csv", row.names=1)[,4]
alpha <- read.csv("~/BA/images Visium/alpha_scores.csv", row.names=1)[,16]
raw <- read.csv("~/BA/images Visium/raw.csv", row.names=1)[,1]
truth <- read.csv("~/BA/images Visium/truth.csv", row.names=1)
F1_raw <- F1_quant(raw, truth$x,raw)
F1_nn <- F1_quant(nn, truth$x,raw)
F1_snn <- F1_quant(snn, truth$x,raw)
F1_nn_spatial <- F1_quant(nn_spatial, truth$x,raw)
F1_snn_spatial <- F1_quant(snn_spatial, truth$x,raw)
F1_spatial <- F1_quant(spatial, truth$x,raw)
F1_union <- F1_quant(union, truth$x,raw)
F1_inter <- F1_quant(inter, truth$x,raw)
F1_alpha <- F1_quant(alpha, truth$x,raw)
pred_raw <- ifelse(raw >=F1_raw$threshold[3], 1, 0)
pred_nn <- ifelse(nn >=F1_nn$threshold[5], 1, 0)
pred_snn <- ifelse(snn >=F1_snn$threshold[4], 1, 0)
pred_nn_spatial <- ifelse(nn_spatial >=F1_nn_spatial$threshold[5], 1, 0)
pred_snn_spatial <- ifelse(snn_spatial >=F1_snn_spatial$threshold[4], 1, 0)
pred_union <- ifelse(union >=F1_union$threshold[5], 1, 0)
pred_inter <- ifelse(inter >=F1_inter$threshold[3], 1, 0)
pred_spatial <- ifelse(spatial >=F1_spatial$threshold[4], 1, 0)
pred_alpha <- ifelse(alpha >=F1_alpha$threshold[5], 1, 0)
accuracy <- NULL
preds <- cbind(pred_raw, pred_nn, pred_snn, pred_nn_spatial, pred_snn_spatial, pred_union, pred_inter, pred_spatial,pred_alpha)
for (i in 1:9) {
conf_mat <- table(truth$x, preds[,i])
acc <- sum(diag(conf_mat))/sum(conf_mat)
accuracy <- append(accuracy, acc)
}
accuracy <- as.matrix(accuracy, nrow=1)
roc_raw <-roc_quant(truth$x, raw)
roc_nn <- roc_quant(truth$x,nn)
roc_snn <- roc_quant(truth$x,snn)
roc_nn_spatial <- roc_quant(truth$x,nn_spatial)
roc_snn_spatial <- roc_quant(truth$x,snn_spatial)
roc_spatial <- roc_quant(truth$x,spatial)
roc_union <- roc_quant(truth$x,union)
roc_inter <- roc_quant(truth$x,inter)
roc_alpha <- roc_quant(truth$x,alpha)
acc2<- rbind(roc_raw$accuracy, roc_nn$accuracy, roc_snn$accuracy, roc_nn_spatial$accuracy, roc_snn_spatial$accuracy, roc_union$accuracy, roc_inter$accuracy, roc_spatial$accuracy, roc_alpha$accuracy)
rownames(accuracy) <- c("raw", "NN", "SNN", "NN_spatial", "SNN_spatial", "union", "intersection", "spatial","alpha")
accuracy <- cbind(acc2, accuracy)
colnames(accuracy) <- c("ROC", "Quantiles")
write.csv(accuracy, "~/BA/images Visium/accuracy_comp.csv", row.names=T)