-
Notifications
You must be signed in to change notification settings - Fork 0
/
DSwin_ego4d_def_pretrained_16cls.sh
33 lines (28 loc) · 1.56 KB
/
DSwin_ego4d_def_pretrained_16cls.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# Without this export it does not work, can't import some strange library
export LD_LIBRARY_PATH=~/anaconda3/lib
export PYTHONWARNINGS="ignore"
# TRAIN THE MODEL
## 1. use_checkpoint makes the training a bit slower (don't know how much), but
## it is much lighter and I can increase the batch size a lot, so it's faster.
## 2. If starting from a backbone pretrained on ImageNet, I need to use
## model.backbone.pretrained. If it is from a model trained on Kinetics is
## load_from
#bash tools/dist_train.sh \
#configs/recognition/swin/Dswin_base_patch244_window877_ego4d_k600_FreeAT.py 8 \
#--cfg-options model.backbone.use_checkpoint=True \
#model.backbone.pretrained=pretrained/DSwin_best.pth \
# model.backbone.num_points=4 work_dir=work_dirs/Dswin_4p_s4_attnpathdrop0 \
# data.videos_per_gpu=60 data.train.pipeline.0.frame_interval=4 \
#model.backbone.drop_path_rate=0.0
CUDA_VISIBLE_DEVICES=1 python tools/test.py \
configs/recognition/swin/Dswin_base_patch244_window877_ego4d_k600_FreeAT.py \
work_dirs/Dswin_bestOSSC_deltaloss/latest.pth --out 'TEST_Dswin_delta.json' \
#--resume-from work_dirs/ego4d_swin_16cls_multigpu_k600/latest.pth \
# # # If resume, put this BEFORE --cfg-options
# # --resume-from work_dirs/Dswin_k600_4p_lrstep/latest.pth \
# # TEST 5
#bash tools/dist_test.sh \
# CUDA_VISIBLE_DEVICES=1 python tools/test.py \
# configs/recognition/swin/swin_base_patch244_window877_ego4d_22k_K600_16cls.py \
# work_dirs/ego4d_swin_16cls_multigpu_k600_lre5_weighted/latest.pth --out 'TEST_weights_pretrained_K600.json' \
#--cfg-options data.test.pipeline.0.frame_interval=4