forked from EmpireProject/Empire
-
-
Notifications
You must be signed in to change notification settings - Fork 586
/
encryption.py
387 lines (313 loc) · 17.4 KB
/
encryption.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
"""
Empire encryption functions.
Includes:
pad() - performs PKCS#7 padding
depad() - Performs PKCS#7 depadding
rsa_xml_to_key() - parses a PowerShell RSA xml import and builds a key object
rsa_encrypt() - encrypts data using the key object
aes_encrypt() - encrypts data using a Cryptography AES object
aes_encrypt_then_hmac() - encrypts and SHA256 HMACs data using a Cryptography AES object
aes_decrypt() - decrypts data using a Cryptography AES object
verify_hmac() - verifies a SHA256 HMAC for a data blob
aes_decrypt_and_verify() - AES decrypts data if the HMAC is validated
generate_aes_key() - generates a ranodm AES key using the OS' Random functionality
rc4() - encrypt/decrypt a data blob using an RC4 key
DiffieHellman() - Mark Loiseau's DiffieHellman implementation, see ./data/licenses/ for license info
"""
import base64
import hashlib
import hmac
import logging
import os
import random
import string
import sys
from xml.dom import minidom
from Crypto.Cipher import PKCS1_v1_5
from Crypto.PublicKey import RSA
from Crypto.Util import number
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
log = logging.getLogger(__name__)
def to_bufferable(binary):
if isinstance(binary, bytes):
return binary
return bytes(ord(b) for b in binary)
def _get_byte(c):
return c
# If a secure random number generator is unavailable, exit with an error.
try:
import ssl
random_function = ssl.RAND_bytes
random_provider = "Python SSL"
except Exception:
random_function = os.urandom
random_provider = "os.urandom"
def pad(data):
"""
Performs PKCS#7 padding for 128 bit block size.
"""
pad = 16 - (len(data) % 16)
return data + to_bufferable(chr(pad).encode("UTF-8") * pad)
# return str(s) + chr(16 - len(str(s)) % 16) * (16 - len(str(s)) % 16)
def depad(data):
"""
Performs PKCS#7 depadding for 128 bit block size.
"""
if len(data) % 16 != 0:
raise ValueError("invalid length")
pad = _get_byte(data[-1])
return data[:-pad]
# return s[:-(ord(s[-1]))]
def rsa_xml_to_key(xml):
"""
Parse powershell RSA.ToXmlString() public key string and
return a key object.
Used during PowerShell RSA-EKE key exchange in agents.py.
Reference- http://stackoverflow.com/questions/10367072/m2crypto-import-keys-from-non-standard-file
https://stackoverflow.com/questions/45575959/rsa-encrypting-password-with-a-public-modulus-and-exponent-in-python
"""
try:
# parse the xml DOM and extract the exponent/modulus
rsa_key_value = minidom.parseString(xml)
modulus = get_long(rsa_key_value.getElementsByTagName("Modulus")[0].childNodes)
exponent = get_long(
rsa_key_value.getElementsByTagName("Exponent")[0].childNodes
)
key = RSA.construct((modulus, exponent))
return key
# if there's an XML parsing error, return None
except Exception:
return None
def get_long(nodelist):
rc = []
for node in nodelist:
if node.nodeType == node.TEXT_NODE:
rc.append(node.data)
node_string = "".join(rc)
return number.bytes_to_long(base64.b64decode(node_string))
def rsa_encrypt(key, data):
"""
Take a key object and use it to encrypt the passed data.
"""
pubkey = PKCS1_v1_5.new(key)
enc_data = pubkey.encrypt(data)
return enc_data
def aes_encrypt(key, data):
"""
Generate a random IV and new AES cipher object with the given
key, and return IV + encryptedData.
"""
if isinstance(key, str):
key = bytes(key, "UTF-8")
if isinstance(data, str):
data = bytes(data, "UTF-8")
backend = default_backend()
IV = os.urandom(16)
cipher = Cipher(algorithms.AES(key), modes.CBC(IV), backend=backend)
encryptor = cipher.encryptor()
ct = encryptor.update(pad(data)) + encryptor.finalize()
return IV + ct
def aes_encrypt_then_hmac(key, data):
"""
Encrypt the data then calculate HMAC over the ciphertext.
"""
if isinstance(key, str):
key = bytes(key, "UTF-8")
if isinstance(data, str):
data = bytes(data, "UTF-8")
data = aes_encrypt(key, data)
mac = hmac.new(key, data, digestmod=hashlib.sha256).digest()
return data + mac[0:10]
def aes_decrypt(key, data):
"""
Generate an AES cipher object, pull out the IV from the data
and return the unencrypted data.
"""
if len(data) > 16:
backend = default_backend()
IV = data[0:16]
cipher = Cipher(algorithms.AES(key), modes.CBC(IV), backend=backend)
decryptor = cipher.decryptor()
pt = depad(decryptor.update(data[16:]) + decryptor.finalize())
return pt
def verify_hmac(key, data):
"""
Verify the HMAC supplied in the data with the given key.
"""
if isinstance(key, str):
key = bytes(key, "latin-1")
if len(data) > 20:
mac = data[-10:]
data = data[:-10]
expected = hmac.new(key, data, digestmod=hashlib.sha256).digest()[0:10]
# Double HMAC to prevent timing attacks. hmac.compare_digest() is
# preferable, but only available since Python 2.7.7.
return (
hmac.new(key, expected, digestmod=hashlib.sha256).digest()
== hmac.new(key, mac, digestmod=hashlib.sha256).digest()
)
else:
return False
def aes_decrypt_and_verify(key, data):
"""
Decrypt the data, but only if it has a valid MAC.
"""
if len(data) > 32 and verify_hmac(key, data):
if isinstance(key, str):
key = bytes(key, "latin-1")
return aes_decrypt(key, data[:-10])
raise Exception("Invalid ciphertext received.")
def generate_aes_key():
"""
Generate a random new 128-bit AES key using OS' secure Random functions.
"""
rng = random.SystemRandom()
return "".join(
rng.sample(
string.ascii_letters + string.digits + r"!#$%&()*+,-./:;<=>?@[\]^_`{|}~", 32
)
)
def rc4(key, data):
"""
RC4 encrypt/decrypt the given data input with the specified key.
From: http://stackoverflow.com/questions/29607753/how-to-decrypt-a-file-that-encrypted-with-rc4-using-python
"""
S, j, out = list(range(256)), 0, []
# This might break python 2.7
key = bytearray(key)
# KSA Phase
for i in range(256):
j = (j + S[i] + key[i % len(key)]) % 256
S[i], S[j] = S[j], S[i]
# this might also break python 2.7
# data = bytearray(data)
# PRGA Phase
i = j = 0
for char in data:
i = (i + 1) % 256
j = (j + S[i]) % 256
S[i], S[j] = S[j], S[i]
if sys.version[0] == "2":
char = ord(char)
out.append(chr(char ^ S[(S[i] + S[j]) % 256]).encode("latin-1"))
# out = str(out)
tmp = b"".join(out)
return tmp
class DiffieHellman:
"""
A reference implementation of the Diffie-Hellman protocol.
By default, this class uses the 6144-bit MODP Group (Group 17) from RFC 3526.
This prime is sufficient to generate an AES 256 key when used with
a 540+ bit exponent.
Authored by Mark Loiseau's implementation at https://github.com/lowazo/pyDHE
version 3.0 of the GNU General Public License
see ./data/licenses/pyDHE_license.txt for license info
Also used in ./data/agent/stager.py for the Python key-negotiation stager
"""
def __init__(self, generator=2, group=17, keyLength=540):
"""
Generate the public and private keys.
"""
min_keyLength = 180
default_generator = 2
valid_generators = [2, 3, 5, 7]
# Sanity check fors generator and keyLength
if generator not in valid_generators:
log.error("Error: Invalid generator. Using default.")
self.generator = default_generator
else:
self.generator = generator
if keyLength < min_keyLength:
log.error("Error: keyLength is too small. Setting to minimum.")
self.keyLength = min_keyLength
else:
self.keyLength = keyLength
self.prime = self.getPrime(group)
self.privateKey = self.genPrivateKey(keyLength)
self.publicKey = self.genPublicKey()
def getPrime(self, group=17):
"""
Given a group number, return a prime.
"""
default_group = 17
primes = {
5: 0xFFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF,
14: 0xFFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF6955817183995497CEA956AE515D2261898FA051015728E5A8AACAA68FFFFFFFFFFFFFFFF,
15: 0xFFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF6955817183995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200CBBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF,
16: 0xFFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF6955817183995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200CBBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199FFFFFFFFFFFFFFFF,
17: 0xFFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF6955817183995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200CBBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C93402849236C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AACC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E6DCC4024FFFFFFFFFFFFFFFF,
18: 0xFFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF6955817183995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200CBBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C93402849236C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AACC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E438777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F5683423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD922222E04A4037C0713EB57A81A23F0C73473FC646CEA306B4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A364597E899A0255DC164F31CC50846851DF9AB48195DED7EA1B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F924009438B481C6CD7889A002ED5EE382BC9190DA6FC026E479558E4475677E9AA9E3050E2765694DFC81F56E880B96E7160C980DD98EDD3DFFFFFFFFFFFFFFFFF,
}
if group in list(primes.keys()):
return primes[group]
else:
log.error(f"Error: No prime with group {group:d}. Using default.")
return primes[default_group]
def genRandom(self, bits):
"""
Generate a random number with the specified number of bits
"""
_rand = 0
_bytes = bits // 8 + 8
while len(bin(_rand)) - 2 < bits:
try:
# Python 3
_rand = int.from_bytes(random_function(_bytes), byteorder="big")
except Exception:
# Python 2
_rand = int(random_function(_bytes).encode("hex"), 16)
return _rand
def genPrivateKey(self, bits):
"""
Generate a private key using a secure random number generator.
"""
return self.genRandom(bits)
def genPublicKey(self):
"""
Generate a public key X with g**x % p.
"""
return pow(self.generator, self.privateKey, self.prime)
def checkPublicKey(self, otherKey):
"""
Check the other party's public key to make sure it's valid.
Since a safe prime is used, verify that the Legendre symbol == 1
"""
if (
otherKey > 2
and otherKey < self.prime - 1
and pow(otherKey, (self.prime - 1) // 2, self.prime) == 1
):
return True
return False
def genSecret(self, privateKey, otherKey):
"""
Check to make sure the public key is valid, then combine it with the
private key to generate a shared secret.
"""
if self.checkPublicKey(otherKey) is True:
sharedSecret = pow(otherKey, privateKey, self.prime)
return sharedSecret
else:
raise Exception("Invalid public key.")
def genKey(self, otherKey):
"""
Derive the shared secret, then hash it to obtain the shared key.
"""
self.sharedSecret = self.genSecret(self.privateKey, otherKey)
# Convert the shared secret (int) to an array of bytes in network order
# Otherwise hashlib can't hash it.
try:
_sharedSecretBytes = self.sharedSecret.to_bytes(
len(bin(self.sharedSecret)) - 2 // 8 + 1, byteorder="big"
)
except AttributeError:
_sharedSecretBytes = str(self.sharedSecret)
s = hashlib.sha256()
s.update(bytes(_sharedSecretBytes))
self.key = s.digest()
def getKey(self):
"""
Return the shared secret key
"""
return self.key