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Abstract
This document provides a description of Shared State Trees (SST’s).

SST’s are data structures that allow state information to be accessed
in both private and public execution contexts. This document will cover
the basic structure of SST’s, explaining how they are built and used.
It also addresses common challenges and offers solutions to improve
their performance, trying to be a useful resource for those interested
in implementing or understanding SST’s.
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1 Introduction
In the Aztec system, while both public and private execution environments
operate with distinct state management (public and private states), there
are scenarios where accessing data across both domains is advantageous.
Such shared access is particularly useful in cases like:
Address Registry: Enabling contracts to interact with other contracts more

easily requires address storage accessible in both public and private
executions.

Immutable Values: Certain constants, such as specific contract addresses,
benefit from being stored in a single, unchanging location for con-
sistency across both domains.

Access Control: Managing privileges in contracts, such as a token con-
tract owner’s ability to mint new tokens, is streamlined when control
information is shared between public and private executions.

This concept is encapsulated in what we term a Shared State Tree
(SST), designed for data that is non-sensitive yet requires persistence
and cross-domain accessibility.

This document will:
• Present a basic SST model facilitating ”shared” storage between pub-

lic and private domains for individual contracts, but leaking contract
addresses in private executions.

• Discuss enhancements to this model to obscure contract addresses
in private executions, along with associated challenges.

• Describe the development of a ’slow update’ SST variant to address
these challenges.

• Explore performance optimizations for the slow update SST.
• Provide an overview of adapting the slow update SST for handling

”immutable” values.
• Discussing whether SST’s should be enshrined or not.

2 Single layer SST
Generally, the design relies on vector commitments where the values and
commitment are publicly available in such a manner that they can be easily
read in public and used for inclusion checks in private.

Logically, you can think of a contract specific SST as what is shown
in Figure 1. Where we have a commitment Cm to a set of values Vm,j∀j for
a specific contract m.

Comment 2.1: Current design
In the current design, we are using Merkle trees to commit to the
values.

2.1 Reading a value from the SST
In public: To read in public, we can simply read the value Vm,j directly
from state (be it public storage or an enshrined tree).
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Cm

Vm,1 Vm,2 · · · Vm,n

Figure 1: A ”tree” committing to the ”shared state variables” for a
specific contract. We refer to the value Cm,j as Vm,j to more easily differ
between the commitments and values, and have Cm be the commitment to
the values Vm,j∀j.

In private: We can provide a membership proof for Vm,j ∈ Cm to show
that the value is indeed part of the commitment, and then check that the
commitment matches the one stored in the state. One issue of this, is
the fact that changes to C will invalidate our membership proof, and make
our read fail (we will refer to this as Comment 2.2).

Comment 2.2: Invalidating membership proofs
Relying on a provided membership proof makes the proof susceptible
to invalidation whenever the tree is updated.

If the values are changed often this can be a serious problem for the
contract, as it will invalidate every pending transactions that is trying to
read from the tree. However, for most uses this is not an issue since it
should not be updating the values in the tree often.

2.2 Updating a value in the SST
To update the value Vm,j to V ′

m,j, we can simply update the value in the
state, and then update the commitment Cm to reflect the new value. This
is similar to how we would normally update a commitment such as a Merkle
root.

Generally, the update relies on a two simple steps:
1. Prove that Vm,j ∈ Cm, e.g., the current value in the state.
2. Compute the new commitment C′

m where Vm,j is replaced by V ′
m,j.

While the logic of updating the SST is relatively simple this way, it
have some important considerations. For one, if multiple actors are able
to write to the SST they can have race-conditions depending on how the
data is provided for the membership proof (recall Comment 2.2).

Nevertheless, for the case of a SST for a specific contract, it might
be acceptable to not mitigate the issue completely, hence it is expected
to apply some access control for privileged writes. The use case should
allow us to accept this flaw as only one entity would likely be updating
the values and it is not expected to happen often.
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This way an update need just update 2 values, the value (Vm,j) itself
and the commitment (Cm).

2.3 Issues
Let summarize the issues we encounter from this design, whether it is
acceptable flaws can be decided separately.

Contract leakage: Since we have a contract specific SST to lookup, we
will be leaking what contract is doing a lookup. In many cases, this is
undesirable since it is breaking some of the guarantees of the system.
You might not leak that it is your transaction, but heuristics becomes
more powerful, especially if linking to non-blockchain data.

Membership invalidation: If the membership proof used in validation is
user-provided, any changes to Cm will invalidate that proof.

This have two important implications:
• It invalidates private reads
• It invalidates updates
Meaning that if two actors are trying to update the values of the same

contract at the same time, the first one to finish will invalidate the proof
of the second one!

The issue of invalidating updates can somewhat mitigated through two
different methods of coordination:
Store more data: If we can ensure that all the information required to

perform an update is available in public state, such that only the new
value is required as input, we can coordinate the updates entirely
trough the public VM. The DA1 requirements for this approach depend
on the commitment scheme used.

Enshrine the tree: We can use the sequencer to coordinate thee updates
similarly to how it coordinates the nullifier tree. Essentially, let the
sequencer provide the membership proofs, while still only storing the
leaves and the commitment.

Note that while these two approaches address the issue of invalidating
updates, they do not address the issue of invalidating reads!

Comment 2.3: Tree implementation
Currently the tree used is a sparse depth 254 tree, but for efficiency
we should look at making a variation of the successor merkle tree.

3 Multilayer SST
To mitigate the issue of leaking specific contract that whose SST we are
reading, we can adopt a multilayered approach. Essentially, create a
separate SST which have the roots from the individual contracts as its
leaves. This way, we can have a single commitment C for the entire tree,
and have the individual commitments Ci as leaves.

1Data availability. Data that can retrieved by actors of the network. Each public state
update require 64 bytes of data.
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By adding this extra layer, we can leak only the top commitment C (that
everyone already knows) while still being able to read the values Vi,j for
a specific contract i. A visualization of this can be seen in Figure 2.

C

...

Cm

...

Vm,1 Vm,2 · · · Vm,n

C1 · · ·

Figure 2: A multilayered ”tree” of commitments. The leaves of the com-
mitment C; Ci, which in turn are the collective commitment of the values
Vi,j for a specific contract i.

3.1 Reading a value from the SST
In public: To read in public, we can simply read the value Vi,j directly
from state (be it public storage or an enshrined tree).

In private: We can provide a membership proof for Vi,j ∈ Ci to show that
the value is indeed part of the commitment, and then a second membership
proof for Ci ∈ C to show that the contract SST is in the state. As earlier,
we are susceptible to the issue of Comment 2.2 from any Ci changing under
our feet while our transaction is pending.

3.2 Updating a value in the SST
While much of the updates stays the same, we need to update the top-level
commitment C as well.
1. Prove that Vm,j ∈ Cm ∧ Cm ∈ C, e.g., the current value is in the state.
2. Compute the new commitment C′

m based on the new value V ′
m,j.

3. Compute the new commitment C′ based on the new C′
m.

3.3 Issues
Since the membership proofs for Cm ∈ C are now dependent on changes in
other contracts, it is much more likely to run into the invalidation issue
introduced in subsection 2.3[Issues].
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This means that it is practically impossible to use the SST for reads
in private execution since the membership proofs will be invalidated by
changes in other contracts.

Enshrining don’t save us: Note that reads will be invalidated even if
the updates are addressed through enshrining the tree into the protocol.

4 Slow update SST
To mitigate the race-condition issues from the multilayered SST we in-
troduce the idea of having a ”delayed” or ”slow” update. Logically this
means keeping track of two trees, one for the current values and one
for the pending values. Whenever an epoch has passed, we replace the
current tree with the pending tree, and start a new pending tree. A
visualization of the structure can be seen in Figure 3.

This way, we can ensure that the values are stable throughout the
epoch, and that the membership proofs are not invalidated by changes in
other contracts more than once every epoch.

C

...

Cm

...

Vm,1 Vm,2 · · · Vm,n

C1 · · ·

Cp

...

Cp
m

...

V p
m,1 V p

m,2 · · · V p
m,n

Cp
1 · · ·

ts ≤
changeTrue False

Figure 3: Logical representation of the ”Slow” SST. Keeping track of a
”current” and a ”pending” tree. Pending tree marked with a superscript
p, e.g., Cp.

From the developer side of things, this means that updates will not
take effect immediately, which might be a little odd to work with initially,
but should be fine when you get used to it.

4.1 Reading a value from the SST
In public: To read in public, we can simply read the value Vi,j directly
from state (be it public storage or an enshrined tree).

In private: We can provide a membership proof for Vi,j ∈ Ci to show that
the value is indeed part of the commitment, and then a second membership
proof for Ci ∈ C to show that the contract SST is in the state.
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Contrary to earlier, we are not as susceptible to Comment 2.2 from a
Ci changing under our feet while our transaction is pending since we are
checking against the current commitment C. However, if our proof used C
and time have progressed enough for the the epoch to have have ended
moving the tree to Cp our proof will be invalidated anyway. Invalidation
once every epoch is nevertheless better than every time any contract is
updated.

4.2 Updating a value in the SST
Updating the values in the SST change a little because of the epoch
update, but otherwise stays mainly the same.

Developer From the developer point of view, the update is very close to
the earlier steps, with the main difference being that they are updating on
the pending tree instead of the current tree. This means that the update
will not take effect until the next epoch.
1. Prove that V p

m,j ∈ Cp
m ∧ Cp

m ∈ Cp, e.g., the current pending value is in
the pending state.

2. Compute the new commitment Cp′

m based on the new value V p′

m,j.

3. Compute the new commitment Cp′ based on the new Cp′

m.
As earlier, the issue of how to provide the membership proofs persist,

but can be addressed with more store or enshrining.

Sequencer At the beginning of a new epoch, the sequencer will update
the commitment C to the new value Cp and start a new pending tree Cp. The
values retrieved from the tree shall reflect the ”current” values, e.g.,
the values from the current epoch C. The new tree Cp should be initialized
as equal to C.

4.3 Issues
While we have limited the issues of invalidating reads greatly, actually
making it possible to use the SST for reads in private execution, we still
have the issue of invalidating updates due to changes in other contracts
as discussed in subsection 2.3.

Separately, the amount of storage changes require to keep track of
two separate trees that are updated at the same time is very high. If done
with public state could make it prohibitively expensive, and for enshrined
it could greatly increase the complexity of the circuits to address the
epoch update.

5 Practical Slow Updates
To mitigate the number of storage updates and/or complexity of the two
tree approach of section 4 we can make a special variant of a tree that
is optimized for slow updates. In this variation, we amortize the cost of
the epoch swap across the updates.

Namely, instead of storing only the value Vm,j at the leaves we will
store a tuple (b, a, c). Where b is the value before or at time c and a the



5 Practical Slow Updates 8

value after c. By applying conditions at the time of read, we can implement
this without requiring any storage updates at epoch changes, but doing a
bit extra work at each update. This makes it more practical for us since
the individual proofs are much smaller.

Essentially, we define a leaf as X = (Xb, Xa, Xc), where Xb is the value
before and Xa the value after and Xc the timestamp of the change. We
can then read the ”current” value using ρ as outlined in Equation 1. We
denote the global variables as G and the global timestamp as Gts):

ρ(X) =

{
Xb if Gts ≤ Xc

Xa otherwise (1)

We use (0, 0, 0) as the empty leaf and initialize Ci∀i as (χ, χ,max), where
χ is the commitment of the empty tree (tree filled with empty leafs) and
max the maximal timestamp. C is then the commitment to all of these
commitments.

The commitments Cm and C follow a similar structure to the leafs and
can be read with ρ in a similar fashion. The main difference being on how
the values are updated. For the commitments, we will update the before
and after such that the b will be the commitment to the values if building
a tree passing Cc

m as the global timestamp and a the commitment to the
values if building a tree passing Cc

m + epoch as the global timestamp.
This way, we can update as if we had two trees without needing to

copy values around at epoch changes.

Cb

Ca

Cc

...

Cb
m

Ca
m

Cc
m

...

V b
m,1

V a
m,1

V b
m,1

V b
m,2

V a
m,2

V b
m,2

· · ·
V b
m,n

V a
m,n

V b
m,n

Cb
1

Ca
1

Cc
1

· · ·

Figure 4: A modified slow updates SST that better lends itself to address-
ing the issue of epoch updates. Each node in being a tuple specifying a
before, after and change value.

5.1 Reading a value from the SST
In public: To read in public we read the leaf tuple, and return the value
based on Equation 1.

In private: We can provide a membership proof for Vi,j ∈ ρ(Ci) to show
that the value is indeed part of the ”current” commitment, and then a
second membership proof for ρ(Cm) ∈ ρ(C) to show that the contract SST is
in the state. As in the naive slow updates SST, proofs will be invalidated
whenever we enter a new epoch.
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5.2 Updating a value in the SST
When updating the value of a leaf Vm,j we need to:
1. Updating the values to ensure they are ”current”:

(a) Update the value V b
m,j to the value returned by ρ(Vm,j);

(b) Update the value Cb
m to the value returned by ρ(Cm);

(c) Update the value Cb to the value returned by ρ(C);
2. Prove that V b

m,j ∈ Cb
m ∧ Cb

m ∈ Cb to ensure that the before value was
updated correctly.

3. Prove that V a
m,j ∈ Ca

m ∧ Ca
m ∈ Ca, ensuring that ”current after” is part

of the ”after” tree,
4. Update ”after” and prove correctness of update

(a) Update the value V a
m,j to the new value V a′

m,j;
(b) Use the membership proof for V a

m,j ∈ Ca
m to update the commitment

Ca
m to become Ca′

m which replaces V a
m,j with V a′

m,j.
(c) Use the membership proof for Ca

m ∈ Ca to update the commitment
Ca to become Ca′ which replaces Ca

m with Ca′

m.

5. Compute the next epoch timestamp as ts′ =
(

ts
epoch + 1

)
· epoch.

6. Update timestamps:
(a) Set V c

m,j = ts′;
(b) Set Cc

m = ts′;
(c) Set Cc = ts′;

As earlier, these updates are susceptible to the issue of how to provide
the membership proofs persist, but can be addressed with more storage
or enshrining2.

5.2.1 Example of updates
Sine the logic for each layer is practically the same. We show with one
layer to keep the figures a bit simpler and easier to follow (also easier to
fit on the page). In Figure 5 we go from the initial tree (CI), and inserts
1 at index 1. We are using 1 as the value of choice since it can emulate
a flag such as being a ”minter” or similar.

When performing a lookup or membership for V1 in this tree fetch the
value ρ(V1) and prove membership in ρ(C).

Comment 5.1: Code-reuse
Implementation wise, we can keep track of the pending updates using
our existing sparse tree and then wait until the epoch has passed to
commit the data. That way using the pending information will give you
‘after‘ while using the committed data will give you ‘before‘.

In Figure 6 we let the duration of the epoch pass, and when in the new
epoch, we will update index 0 to contain the value 1.

As seen from the figure, only the leaf at index 0 and the commitment C
have changed to reflect the new value.

2Might be solvable with a different commitment schemes as well.
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CI
CI
max

0
0
0

0
0
0

· · ·
0
0
0

(a) Initial state

CI
C′
Imax

0
0
0

0
1
0

· · ·
0
0
0

(b) Step 4.

CI
C′
I

ts′

0
0
0

0
1
ts′

· · ·
0
0
0

(c) Step 6.

Figure 5: Initial insertion of the value 1 into the state at index 1.

CI
C′
I

ts′

0
0
0

0
1
ts′

· · ·
0
0
0

(a) Initial state

C′
I

C′
I

ts′

0
0
0

1
1
ts′

· · ·
0
0
0

(b) Step 1.

C′
I

C′
I

ts′

0
1
0

1
1
ts′

· · ·
0
0
0

(c) Step 4.

C′
I

C′′
I

ts′′

0
1

ts′′

1
1
ts′

· · ·
0
0
0

(d) Step 6.

Figure 6: Inserting the value 1 into the state at index 0 after time ts′.

Comment 5.2: A note on Data Requirements
If we need to keep track of the intermediates in state, I think we need
a full leaf. That would be 3 ∗ 64 bytes per node if in public state, so
for a depth 32 tree that would be 6144 bytes.

Comment 5.3: Implementation
Beware that the current noir implementation is not complete, but rather
a single layer tree that is leaking the contract address.

5.3 Immutable extension
The SST can be updated to reject updates of values that are already
set, thereby allowing us to have immutable values that are available in
both private and public. The insertion is still delayed, but for things like
constructor specified values it seems like a fair tradeoff.

6 Enshrine or not?
The decision to enshrine the SST in the protocol - that is, integrating it
at the kernel and rollup circuit levels - warrants careful consideration of
both its potential advantages and limitations.

Rationale for Enshrining the SST:
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• Complex Update Coordination: As previously noted, managing updates
for the top-level of the SST poses significant challenges due to mem-
bership invalidation issues - enshrining could streamline this process.

Benefits of Enshrining
Reduced Execution and Data Costs: Direct protocol integration could lead to

more efficient handling of updates, reducing both execution and data
costs. This efficiency comes from utilizing optimized circuits instead
of the public VM and the sequencer’s role in providing membership
proofs.

Contract Upgrades: Enshrining the SST allows for direct use at the kernel
level for purposes like storing contract class references, potentially
simplifying contract upgrades3.

Drawbacks of Enshrining
Reduced Flexibility: Integrating the SST into the protocol could signifi-

cantly limit our ability to modify its design in the future.
Increased Complexity: The addition of the SST would complicate the ker-

nel and rollup circuits, introducing another layer of complexity to
manage.

Limited Scope of Benefits: The main advantage of enshrining the SST lies
in update facilitation, with little to no improvement in read operations,
hence these must occur in the application for flexibility.

Uncertain Requirements: Given the ongoing exploration of various SST vari-
ations (e.g., immutables, slow updates), the exact requirements are
not fully understood, which complicates the decision to enshrine a
specific implementation.

Recommendation: Given these considerations, especially the uncertainty
around specific SST requirements and the potential loss of flexibility, I
recommend against enshrining the SST at this stage. Instead, we should
focus on research and optimizations (section 7), particularly aimed at
making updates more efficient and less data-intensive. This approach
maintains the protocol’s flexibility, which seems paramount given our cur-
rent understanding of SST use cases.

Regarding contract upgrades, while not enshrining the SST necessitates
alternative solutions like delegatecall should be possible.

7 Future work
• The current noir implementation of a Slow updates tree should be

extended to fully implement the practical SST (see Comment 5.3).
• Explore the use of other commitment schemes than Merkle trees to

reduce the storage requirements. Example could be Semacaulk: http
s://github.com/geometryresearch/semacaulk/.

• Explore the use of queue for updates to reduce the storage require-
ments4.

3Discussed in https://forum.aztec.network/t/contract-upgrades-and-shared-private-
state/2393

4We can use a queue to make ”mass” updates, but unless we can ensure that queue
cannot be used to dos the updates the solution is unacceptable

https://github.com/geometryresearch/semacaulk/
https://github.com/geometryresearch/semacaulk/
https://forum.aztec.network/t/contract-upgrades-and-shared-private-state/2393
https://forum.aztec.network/t/contract-upgrades-and-shared-private-state/2393
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