diff --git a/barretenberg/cpp/src/barretenberg/benchmark/relations_bench/relations.bench.cpp b/barretenberg/cpp/src/barretenberg/benchmark/relations_bench/relations.bench.cpp index f735d2cfb19..b6545d90245 100644 --- a/barretenberg/cpp/src/barretenberg/benchmark/relations_bench/relations.bench.cpp +++ b/barretenberg/cpp/src/barretenberg/benchmark/relations_bench/relations.bench.cpp @@ -1,7 +1,8 @@ #include "barretenberg/eccvm/eccvm_flavor.hpp" -#include "barretenberg/protogalaxy/protogalaxy_prover.hpp" +#include "barretenberg/protogalaxy/protogalaxy_prover_internal.hpp" // just for an alias; should perhaps move to prover #include "barretenberg/stdlib_circuit_builders/mega_flavor.hpp" #include "barretenberg/stdlib_circuit_builders/ultra_flavor.hpp" +#include "barretenberg/sumcheck/instance/instances.hpp" #include "barretenberg/translator_vm/translator_flavor.hpp" #include @@ -53,8 +54,7 @@ template void execute_relation_for_univaria template void execute_relation_for_pg_univariates(::benchmark::State& state) { using ProverInstances = ProverInstances_; - using ProtoGalaxyProver = ProtoGalaxyProver_; - using Input = ProtoGalaxyProver::ExtendedUnivariates; + using Input = ProtogalaxyProverInternal::ExtendedUnivariates; using Accumulator = typename Relation::template ProtogalaxyTupleOfUnivariatesOverSubrelations; execute_relation(state); diff --git a/barretenberg/cpp/src/barretenberg/protogalaxy/combiner.test.cpp b/barretenberg/cpp/src/barretenberg/protogalaxy/combiner.test.cpp index 179e81b519e..6d29ac6a4dc 100644 --- a/barretenberg/cpp/src/barretenberg/protogalaxy/combiner.test.cpp +++ b/barretenberg/cpp/src/barretenberg/protogalaxy/combiner.test.cpp @@ -1,7 +1,6 @@ #include "barretenberg/honk/utils/testing.hpp" -#include "barretenberg/polynomials/pow.hpp" #include "barretenberg/protogalaxy/protogalaxy_prover.hpp" -#include "barretenberg/relations/relation_parameters.hpp" +#include "barretenberg/protogalaxy/protogalaxy_prover_internal.hpp" #include "barretenberg/relations/ultra_arithmetic_relation.hpp" #include "barretenberg/stdlib_circuit_builders/ultra_flavor.hpp" #include "barretenberg/sumcheck/instance/instances.hpp" @@ -21,6 +20,7 @@ TEST(Protogalaxy, CombinerOn2Instances) using ProverInstance = ProverInstance_; using ProverInstances = ProverInstances_; using ProtoGalaxyProver = ProtoGalaxyProver_; + using Fun = ProtogalaxyProverInternal; const auto restrict_to_standard_arithmetic_relation = [](auto& polys) { std::fill(polys.q_arith.begin(), polys.q_arith.end(), 1); @@ -56,7 +56,7 @@ TEST(Protogalaxy, CombinerOn2Instances) ProverInstances instances{ instance_data }; instances.alphas.fill(bb::Univariate(FF(0))); // focus on the arithmetic relation only auto pow_polynomial = PowPolynomial(std::vector{ 2 }); - auto result = prover.compute_combiner(instances, pow_polynomial); + auto result = Fun::compute_combiner(instances, pow_polynomial, prover.state.univariate_accumulators); // The expected_result values are computed by running the python script combiner_example_gen.py auto expected_result = Univariate(std::array{ 9704UL, 13245288UL, @@ -134,8 +134,9 @@ TEST(Protogalaxy, CombinerOn2Instances) 0 0 0 0 0 0 0 0 0 6 18 36 60 90 */ auto pow_polynomial = PowPolynomial(std::vector{ 2 }); - auto result = prover.compute_combiner(instances, pow_polynomial); - auto optimised_result = prover.compute_combiner(instances, pow_polynomial); + auto result = Fun::compute_combiner(instances, pow_polynomial, prover.state.univariate_accumulators); + auto optimised_result = + Fun::compute_combiner(instances, pow_polynomial, prover.state.optimised_univariate_accumulators); auto expected_result = Univariate(std::array{ 0, 0, 12, 36, 72, 120, 180, 252, 336, 432, 540, 660 }); @@ -154,6 +155,7 @@ TEST(Protogalaxy, CombinerOptimizationConsistency) using ProverInstance = ProverInstance_; using ProverInstances = ProverInstances_; using ProtoGalaxyProver = ProtoGalaxyProver_; + using Fun = ProtogalaxyProverInternal; using UltraArithmeticRelation = UltraArithmeticRelation; constexpr size_t UNIVARIATE_LENGTH = 12; @@ -252,8 +254,9 @@ TEST(Protogalaxy, CombinerOptimizationConsistency) precomputed_result[idx] = std::get<0>(accumulator)[0]; } auto expected_result = Univariate(precomputed_result); - auto result = prover.compute_combiner(instances, pow_polynomial); - auto optimised_result = prover.compute_combiner(instances, pow_polynomial); + auto result = Fun::compute_combiner(instances, pow_polynomial, prover.state.univariate_accumulators); + auto optimised_result = + Fun::compute_combiner(instances, pow_polynomial, prover.state.optimised_univariate_accumulators); EXPECT_EQ(result, expected_result); EXPECT_EQ(optimised_result, expected_result); @@ -320,8 +323,9 @@ TEST(Protogalaxy, CombinerOptimizationConsistency) 0 0 0 0 0 0 0 0 0 6 18 36 60 90 */ auto pow_polynomial = PowPolynomial(std::vector{ 2 }); - auto result = prover.compute_combiner(instances, pow_polynomial); - auto optimised_result = prover.compute_combiner(instances, pow_polynomial); + auto result = Fun::compute_combiner(instances, pow_polynomial, prover.state.univariate_accumulators); + auto optimised_result = + Fun::compute_combiner(instances, pow_polynomial, prover.state.optimised_univariate_accumulators); auto expected_result = Univariate(std::array{ 0, 0, 12, 36, 72, 120, 180, 252, 336, 432, 540, 660 }); @@ -333,15 +337,16 @@ TEST(Protogalaxy, CombinerOptimizationConsistency) run_test(false); }; -// Tests a combiner on 4 instances, note currently we don't plan -// to fold with num instances > 2, this would require an additional explicit instantiation in -// protogalaxy_prover_ultra.cpp. Currently, we rather save the compile time. -// TEST(Protogalaxy, CombinerOn4Instances) +// // Tests a combiner on 4 instances, note currently we don't plan +// // to fold with num instances > 2, this would require an additional explicit instantiation in +// // protogalaxy_prover_ultra.cpp. Currently, we rather save the compile time. +// TEST(Protogalaxy, DISABLED_CombinerOn4Instances) // { // constexpr size_t NUM_INSTANCES = 4; // using ProverInstance = ProverInstance_; // using ProverInstances = ProverInstances_; // using ProtoGalaxyProver = ProtoGalaxyProver_; +// using Fun = ProtogalaxyProverInternal; // const auto zero_all_selectors = [](auto& polys) { // std::fill(polys.q_arith.begin(), polys.q_arith.end(), 0); @@ -376,8 +381,9 @@ TEST(Protogalaxy, CombinerOptimizationConsistency) // zero_all_selectors(instances[3]->proving_key.polynomials); // auto pow_polynomial = PowPolynomial(std::vector{ 2 }); -// auto result = prover.compute_combiner(instances, pow_polynomial); -// auto optimised_result = prover.compute_combiner(instances, pow_polynomial); +// auto result = Fun::compute_combiner(instances, pow_polynomial, prover.state.univariate_accumulators); +// auto optimised_result = +// Fun::compute_combiner(instances, pow_polynomial, prover.state.optimised_univariate_accumulators); // std::array zeroes; // std::fill(zeroes.begin(), zeroes.end(), 0); // auto expected_result = Univariate(zeroes); diff --git a/barretenberg/cpp/src/barretenberg/protogalaxy/protogalaxy.test.cpp b/barretenberg/cpp/src/barretenberg/protogalaxy/protogalaxy.test.cpp index 4a700d6bd16..a8d33f910bd 100644 --- a/barretenberg/cpp/src/barretenberg/protogalaxy/protogalaxy.test.cpp +++ b/barretenberg/cpp/src/barretenberg/protogalaxy/protogalaxy.test.cpp @@ -1,6 +1,7 @@ #include "barretenberg/goblin/mock_circuits.hpp" #include "barretenberg/polynomials/pow.hpp" #include "barretenberg/protogalaxy/protogalaxy_prover.hpp" +#include "barretenberg/protogalaxy/protogalaxy_prover_internal.hpp" #include "barretenberg/protogalaxy/protogalaxy_verifier.hpp" #include "barretenberg/protogalaxy/prover_verifier_shared.hpp" #include "barretenberg/stdlib_circuit_builders/mock_circuits.hpp" @@ -37,6 +38,7 @@ template class ProtoGalaxyTests : public testing::Test { using DeciderVerifier = DeciderVerifier_; using FoldingProver = ProtoGalaxyProver_; using FoldingVerifier = ProtoGalaxyVerifier_; + using Fun = ProtogalaxyProverInternal; using TupleOfInstances = std::tuple>, std::vector>>; @@ -93,7 +95,7 @@ template class ProtoGalaxyTests : public testing::Test { static void check_accumulator_target_sum_manual(std::shared_ptr& accumulator, bool expected_result) { auto instance_size = accumulator->proving_key.circuit_size; - auto expected_honk_evals = ProtoGalaxyProver::compute_full_honk_evaluations( + auto expected_honk_evals = Fun::compute_full_honk_evaluations( accumulator->proving_key.polynomials, accumulator->alphas, accumulator->relation_parameters); // Construct pow(\vec{betas*}) as in the paper auto expected_pows = PowPolynomial(accumulator->gate_challenges); @@ -146,7 +148,7 @@ template class ProtoGalaxyTests : public testing::Test { for (auto& alpha : instance->alphas) { alpha = FF::random_element(); } - auto full_honk_evals = ProtoGalaxyProver::compute_full_honk_evaluations( + auto full_honk_evals = Fun::compute_full_honk_evaluations( instance->proving_key.polynomials, instance->alphas, instance->relation_parameters); // Evaluations should be 0 for valid circuit @@ -165,7 +167,7 @@ template class ProtoGalaxyTests : public testing::Test { std::vector betas = { FF(5), FF(8), FF(11) }; std::vector deltas = { FF(2), FF(4), FF(8) }; std::vector full_honk_evaluations = { FF(1), FF(1), FF(1), FF(1), FF(1), FF(1), FF(1), FF(1) }; - auto perturbator = ProtoGalaxyProver::construct_perturbator_coefficients(betas, deltas, full_honk_evaluations); + auto perturbator = Fun::construct_perturbator_coefficients(betas, deltas, full_honk_evaluations); std::vector expected_values = { FF(648), FF(936), FF(432), FF(64) }; EXPECT_EQ(perturbator.size(), 4); // log(instance_size) + 1 for (size_t i = 0; i < perturbator.size(); i++) { @@ -195,8 +197,7 @@ template class ProtoGalaxyTests : public testing::Test { alpha = FF::random_element(); } - auto full_honk_evals = - ProtoGalaxyProver::compute_full_honk_evaluations(full_polynomials, alphas, relation_parameters); + auto full_honk_evals = Fun::compute_full_honk_evaluations(full_polynomials, alphas, relation_parameters); std::vector betas(log_instance_size); for (size_t idx = 0; idx < log_instance_size; idx++) { betas[idx] = FF::random_element(); @@ -220,7 +221,7 @@ template class ProtoGalaxyTests : public testing::Test { accumulator->alphas = alphas; auto deltas = compute_round_challenge_pows(log_instance_size, FF::random_element()); - auto perturbator = ProtoGalaxyProver::compute_perturbator(accumulator, deltas); + auto perturbator = Fun::compute_perturbator(accumulator, deltas); // Ensure the constant coefficient of the perturbator is equal to the target sum as indicated by the paper EXPECT_EQ(perturbator[0], target_sum); @@ -235,7 +236,7 @@ template class ProtoGalaxyTests : public testing::Test { { auto compressed_perturbator = FF(2); // F(\alpha) in the paper auto combiner = bb::Univariate(std::array{ 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 }); - auto combiner_quotient = ProtoGalaxyProver::compute_combiner_quotient(compressed_perturbator, combiner); + auto combiner_quotient = Fun::compute_combiner_quotient(compressed_perturbator, combiner); // K(i) = (G(i) - ( L_0(i) * F(\alpha)) / Z(i), i = {2,.., 13} for ProverInstances::NUM = 2 // K(i) = (G(i) - (1 - i) * F(\alpha)) / i * (i - 1) @@ -274,7 +275,7 @@ template class ProtoGalaxyTests : public testing::Test { instance2->relation_parameters.eta = 3; ProverInstances instances{ { instance1, instance2 } }; - ProtoGalaxyProver::combine_relation_parameters(instances); + Fun::combine_relation_parameters(instances); bb::Univariate expected_eta{ { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 } }; EXPECT_EQ(instances.relation_parameters.eta, expected_eta); @@ -301,7 +302,7 @@ template class ProtoGalaxyTests : public testing::Test { instance2->alphas.fill(4); ProverInstances instances{ { instance1, instance2 } }; - ProtoGalaxyProver::combine_alpha(instances); + Fun::combine_alpha(instances); bb::Univariate expected_alpha{ { 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 } }; for (const auto& alpha : instances.alphas) { diff --git a/barretenberg/cpp/src/barretenberg/protogalaxy/protogalaxy_prover.hpp b/barretenberg/cpp/src/barretenberg/protogalaxy/protogalaxy_prover.hpp index 56d020074a0..f8e43112e16 100644 --- a/barretenberg/cpp/src/barretenberg/protogalaxy/protogalaxy_prover.hpp +++ b/barretenberg/cpp/src/barretenberg/protogalaxy/protogalaxy_prover.hpp @@ -1,26 +1,24 @@ #pragma once -#include "barretenberg/common/op_count.hpp" -#include "barretenberg/common/thread.hpp" -#include "barretenberg/flavor/flavor.hpp" -#include "barretenberg/polynomials/pow.hpp" #include "barretenberg/polynomials/univariate.hpp" #include "barretenberg/protogalaxy/folding_result.hpp" -#include "barretenberg/relations/relation_parameters.hpp" -#include "barretenberg/relations/utils.hpp" -#include "barretenberg/stdlib_circuit_builders/mega_flavor.hpp" -#include "barretenberg/stdlib_circuit_builders/ultra_flavor.hpp" -#include "barretenberg/sumcheck/instance/instances.hpp" namespace bb { template struct ProtogalaxyProofConstructionState { using FF = typename ProverInstances_::FF; using ProverInstance = typename ProverInstances_::Instance; + using Flavor = typename ProverInstances_::Flavor; + using TupleOfTuplesOfUnivariates = + typename Flavor::template ProtogalaxyTupleOfTuplesOfUnivariates; + using OptimisedTupleOfTuplesOfUnivariates = + typename Flavor::template OptimisedProtogalaxyTupleOfTuplesOfUnivariates; std::shared_ptr accumulator; LegacyPolynomial perturbator; std::vector deltas; Univariate combiner_quotient; FF compressed_perturbator; + OptimisedTupleOfTuplesOfUnivariates optimised_univariate_accumulators; + TupleOfTuplesOfUnivariates univariate_accumulators; FoldingResult result; }; @@ -31,45 +29,7 @@ template class ProtoGalaxyProver_ { using Transcript = typename Flavor::Transcript; using FF = typename Flavor::FF; using Instance = typename ProverInstances::Instance; - using Utils = bb::RelationUtils; - using RowEvaluations = typename Flavor::AllValues; - using ProvingKey = typename Flavor::ProvingKey; - using ProverPolynomials = typename Flavor::ProverPolynomials; - using Relations = typename Flavor::Relations; - using RelationSeparator = typename Flavor::RelationSeparator; - using CombinedRelationSeparator = typename ProverInstances::RelationSeparator; - using VerificationKey = typename Flavor::VerificationKey; using CommitmentKey = typename Flavor::CommitmentKey; - using WitnessCommitments = typename Flavor::WitnessCommitments; - using CommitmentLabels = typename Flavor::CommitmentLabels; - using Commitment = typename Flavor::Commitment; - - using BaseUnivariate = Univariate; - // The length of ExtendedUnivariate is the largest length (==max_relation_degree + 1) of a univariate polynomial - // obtained by composing a relation with folded instance + relation parameters . - using ExtendedUnivariate = Univariate; - // Same as ExtendedUnivariate, but uses optimised univariates which skip redundant computation in optimistic cases - // (when we know that the evaluation of all relations is 0 on a particular index, for example) - using OptimisedExtendedUnivariate = - Univariate; - // Represents the total length of the combiner univariate, obtained by combining the already folded relations with - // the folded relation batching challenge. - using ExtendedUnivariateWithRandomization = - Univariate; - using ExtendedUnivariates = typename Flavor::template ProverUnivariates; - using OptimisedExtendedUnivariates = - typename Flavor::template OptimisedProverUnivariates; - - using TupleOfTuplesOfUnivariates = - typename Flavor::template ProtogalaxyTupleOfTuplesOfUnivariates; - using OptimisedTupleOfTuplesOfUnivariates = - typename Flavor::template OptimisedProtogalaxyTupleOfTuplesOfUnivariates; - using RelationEvaluations = typename Flavor::TupleOfArraysOfValues; static constexpr size_t NUM_SUBRELATIONS = ProverInstances::NUM_SUBRELATIONS; @@ -114,277 +74,6 @@ template class ProtoGalaxyProver_ { // FoldingParameters set and be the result of a previous round of folding. std::shared_ptr get_accumulator() { return instances[0]; } - /** - * @brief Compute the values of the full Honk relation at each row in the execution trace, representing f_i(ω) in - * the ProtoGalaxy paper, given the evaluations of all the prover polynomials and \vec{α} (the batching challenges - * that help establishing each subrelation is independently valid in Honk - from the Plonk paper, DO NOT confuse - * with α in ProtoGalaxy). - * - * @details When folding Mega instances, one of the relations is linearly dependent. We define such relations - * as acting on the entire execution trace and hence requiring to be accumulated separately as we iterate over each - * row. At the end of the function, the linearly dependent contribution is accumulated at index 0 representing the - * sum f_0(ω) + α_j*g(ω) where f_0 represents the full honk evaluation at row 0, g(ω) is the linearly dependent - * subrelation and α_j is its corresponding batching challenge. - */ - static std::vector compute_full_honk_evaluations(const ProverPolynomials& instance_polynomials, - const RelationSeparator& alpha, - const RelationParameters& relation_parameters); - - /** - * @brief Recursively compute the parent nodes of each level in the tree, starting from the leaves. Note that at - * each level, the resulting parent nodes will be polynomials of degree (level+1) because we multiply by an - * additional factor of X. - */ - static std::vector construct_coefficients_tree(const std::vector& betas, - const std::vector& deltas, - const std::vector>& prev_level_coeffs, - size_t level = 1); - - /** - * @brief We construct the coefficients of the perturbator polynomial in O(n) time following the technique in - * Claim 4.4. Consider a binary tree whose leaves are the evaluations of the full Honk relation at each row in the - * execution trace. The subsequent levels in the tree are constructed using the following technique: At level i in - * the tree, label the branch connecting the left node n_l to its parent by 1 and for the right node n_r by β_i + - * δ_i X. The value of the parent node n will be constructed as n = n_l + n_r * (β_i + δ_i X). Recurse over each - * layer until the root is reached which will correspond to the perturbator polynomial F(X). - * TODO(https://github.com/AztecProtocol/barretenberg/issues/745): make computation of perturbator more memory - * efficient, operate in-place and use std::resize; add multithreading - */ - static std::vector construct_perturbator_coefficients(const std::vector& betas, - const std::vector& deltas, - const std::vector& full_honk_evaluations); - - /** - * @brief Construct the power perturbator polynomial F(X) in coefficient form from the accumulator, representing the - * relaxed instance. - * - * - */ - static LegacyPolynomial compute_perturbator(std::shared_ptr accumulator, - const std::vector& deltas); - - OptimisedTupleOfTuplesOfUnivariates optimised_univariate_accumulators; - TupleOfTuplesOfUnivariates univariate_accumulators; - - /** - * @brief Prepare a univariate polynomial for relation execution in one step of the main loop in folded instance - * construction. - * @details For a fixed prover polynomial index, extract that polynomial from each instance in Instances. From - *each polynomial, extract the value at row_idx. Use these values to create a univariate polynomial, and then - *extend (i.e., compute additional evaluations at adjacent domain values) as needed. - * @todo TODO(https://github.com/AztecProtocol/barretenberg/issues/751) Optimize memory - * - * - */ - - template - void extend_univariates( - std::conditional_t& extended_univariates, - const ProverInstances& instances, - const size_t row_idx) - { - auto base_univariates = instances.template row_to_univariates(row_idx); - for (auto [extended_univariate, base_univariate] : zip_view(extended_univariates.get_all(), base_univariates)) { - extended_univariate = base_univariate.template extend_to(); - } - } - - /** - * @brief Add the value of each relation over univariates to an appropriate accumulator - * - * @tparam TupleOfTuplesOfUnivariates_ A tuple of univariate accumulators, where the univariates may be optimized to - * avoid computation on some indices. - * @tparam ExtendedUnivariates_ T - * @tparam Parameters relation parameters type - * @tparam relation_idx The index of the relation - * @param univariate_accumulators - * @param extended_univariates - * @param relation_parameters - * @param scaling_factor - */ - template - void accumulate_relation_univariates(TupleOfTuplesOfUnivariates_& univariate_accumulators, - const ExtendedUnivariates_& extended_univariates, - const Parameters& relation_parameters, - const FF& scaling_factor) - { - using Relation = std::tuple_element_t; - - // Check if the relation is skippable to speed up accumulation - if constexpr (!isSkippable) { - // If not, accumulate normally - Relation::accumulate(std::get(univariate_accumulators), - extended_univariates, - relation_parameters, - scaling_factor); - } else { - // If so, only compute the contribution if the relation is active - if (!Relation::skip(extended_univariates)) { - Relation::accumulate(std::get(univariate_accumulators), - extended_univariates, - relation_parameters, - scaling_factor); - } - } - - // Repeat for the next relation. - if constexpr (relation_idx + 1 < Flavor::NUM_RELATIONS) { - accumulate_relation_univariates( - univariate_accumulators, extended_univariates, relation_parameters, scaling_factor); - } - } - - /** - * @brief Compute the combiner polynomial $G$ in the Protogalaxy paper - * @details We have implemented an optimization that (eg in the case where we fold one instance-witness pair at a - * time) assumes the value G(1) is 0, which is true in the case where the witness to be folded is valid. - * @todo (https://github.com/AztecProtocol/barretenberg/issues/968) Make combiner tests better - * - * @tparam skip_zero_computations whether to use the the optimization that skips computing zero. - * @param instances - * @param pow_betas - * @return ExtendedUnivariateWithRandomization - */ - template - ExtendedUnivariateWithRandomization compute_combiner(const ProverInstances& instances, PowPolynomial& pow_betas) - { - BB_OP_COUNT_TIME(); - size_t common_instance_size = instances[0]->proving_key.circuit_size; - pow_betas.compute_values(instances[0]->proving_key.log_circuit_size); - // Determine number of threads for multithreading. - // Note: Multithreading is "on" for every round but we reduce the number of threads from the max available based - // on a specified minimum number of iterations per thread. This eventually leads to the use of a - // single thread. For now we use a power of 2 number of threads simply to ensure the round size is evenly - // divided. - size_t max_num_threads = get_num_cpus_pow2(); // number of available threads (power of 2) - size_t min_iterations_per_thread = 1 << 6; // min number of iterations for which we'll spin up a unique thread - size_t desired_num_threads = common_instance_size / min_iterations_per_thread; - size_t num_threads = std::min(desired_num_threads, max_num_threads); // fewer than max if justified - num_threads = num_threads > 0 ? num_threads : 1; // ensure num threads is >= 1 - size_t iterations_per_thread = common_instance_size / num_threads; // actual iterations per thread - - // Univariates are optimised for usual PG, but we need the unoptimised version for tests (it's a version that - // doesn't skip computation), so we need to define types depending on the template instantiation - using ThreadAccumulators = - std::conditional_t; - using ExtendedUnivatiatesType = - std::conditional_t; - - // Construct univariate accumulator containers; one per thread - std::vector thread_univariate_accumulators(num_threads); - for (auto& accum : thread_univariate_accumulators) { - // just normal relation lengths - Utils::zero_univariates(accum); - } - - // Construct extended univariates containers; one per thread - std::vector extended_univariates; - extended_univariates.resize(num_threads); - - // Accumulate the contribution from each sub-relation - parallel_for(num_threads, [&](size_t thread_idx) { - size_t start = thread_idx * iterations_per_thread; - size_t end = (thread_idx + 1) * iterations_per_thread; - - for (size_t idx = start; idx < end; idx++) { - // Instantiate univariates, possibly with skipping toto ignore computation in those indices (they are - // still available for skipping relations, but all derived univariate will ignore those evaluations) - // No need to initialise extended_univariates to 0, as it's assigned to. - constexpr size_t skip_count = skip_zero_computations ? ProverInstances::NUM - 1 : 0; - extend_univariates(extended_univariates[thread_idx], instances, idx); - - FF pow_challenge = pow_betas[idx]; - - // Accumulate the i-th row's univariate contribution. Note that the relation parameters passed to - // this function have already been folded. Moreover, linear-dependent relations that act over the - // entire execution trace rather than on rows, will not be multiplied by the pow challenge. - if constexpr (skip_zero_computations) { - accumulate_relation_univariates( - thread_univariate_accumulators[thread_idx], - extended_univariates[thread_idx], - instances.optimised_relation_parameters, // these parameters have already been folded - pow_challenge); - } else { - accumulate_relation_univariates( - thread_univariate_accumulators[thread_idx], - extended_univariates[thread_idx], - instances.relation_parameters, // these parameters have already been folded - pow_challenge); - } - } - }); - const auto batch_univariates = [&](auto& possibly_optimised_univariate_accumulators) { - Utils::zero_univariates(possibly_optimised_univariate_accumulators); - // Accumulate the per-thread univariate accumulators into a single set of accumulators - for (auto& accumulators : thread_univariate_accumulators) { - Utils::add_nested_tuples(possibly_optimised_univariate_accumulators, accumulators); - } - - if constexpr (skip_zero_computations) { // Convert from optimised version to non-optimised - deoptimise_univariates(possibly_optimised_univariate_accumulators, univariate_accumulators); - }; - // Batch the univariate contributions from each sub-relation to obtain the round univariate - return batch_over_relations(univariate_accumulators, instances.alphas); - }; - - if constexpr (skip_zero_computations) { // Convert from optimised version to non-optimised - return batch_univariates(optimised_univariate_accumulators); - } else { - return batch_univariates(univariate_accumulators); - } - } - - /** - * @brief Convert univariates from optimised form to regular - * - * @details We need to convert before we batch relations, since optimised versions don't have enough information to - * extend the univariates to maximum length - * - * @param optimised_univariate_accumulators - * @param new_univariate_accumulators - */ - static void deoptimise_univariates(const OptimisedTupleOfTuplesOfUnivariates& optimised_univariate_accumulators, - TupleOfTuplesOfUnivariates& new_univariate_accumulators - - ); - - static ExtendedUnivariateWithRandomization batch_over_relations(TupleOfTuplesOfUnivariates& univariate_accumulators, - const CombinedRelationSeparator& alpha); - - static std::pair> - _compute_vanishing_polynomial_and_lagranges(const FF& challenge); - /** - * @brief Compute the combiner quotient defined as $K$ polynomial in the paper. - * - * TODO(https://github.com/AztecProtocol/barretenberg/issues/764): generalize the computation of vanishing - * polynomials and Lagrange basis and use batch_invert. - * - */ - static Univariate compute_combiner_quotient( - FF compressed_perturbator, ExtendedUnivariateWithRandomization combiner); - - /** - * @brief Combine each relation parameter, in part, from all the instances into univariates, used in the - * computation of combiner. - * @details For a given relation parameter type, extract that parameter from each instance, place the values in - * a univariate (i.e., sum them against an appropriate univariate Lagrange basis) and then extended as needed - * during the constuction of the combiner. - */ - static void combine_relation_parameters(ProverInstances& instances); - - /** - * @brief Combine the relation batching parameters (alphas) from each instance into a univariate, used in the - * computation of combiner. - * - */ - static void combine_alpha(ProverInstances& instances); - /** * @brief Compute the next accumulator (ϕ*, ω*, \vec{\beta*}, e*), send the public data ϕ* and the folding * parameters diff --git a/barretenberg/cpp/src/barretenberg/protogalaxy/protogalaxy_prover_impl.hpp b/barretenberg/cpp/src/barretenberg/protogalaxy/protogalaxy_prover_impl.hpp index d8c55c76aab..89fccacc250 100644 --- a/barretenberg/cpp/src/barretenberg/protogalaxy/protogalaxy_prover_impl.hpp +++ b/barretenberg/cpp/src/barretenberg/protogalaxy/protogalaxy_prover_impl.hpp @@ -1,218 +1,12 @@ #pragma once -#include "barretenberg/common/container.hpp" #include "barretenberg/common/op_count.hpp" -#include "barretenberg/common/thread.hpp" -#include "barretenberg/flavor/flavor.hpp" +#include "barretenberg/protogalaxy/protogalaxy_prover_internal.hpp" #include "barretenberg/protogalaxy/prover_verifier_shared.hpp" +#include "barretenberg/relations/relation_parameters.hpp" #include "barretenberg/ultra_honk/oink_prover.hpp" #include "protogalaxy_prover.hpp" namespace bb { -// See protogalaxy_prover.hpp for details -template -std::vector::FF> ProtoGalaxyProver_< - ProverInstances_>::compute_full_honk_evaluations(const ProverPolynomials& instance_polynomials, - const RelationSeparator& alpha, - const RelationParameters& relation_parameters) -{ - BB_OP_COUNT_TIME_NAME("ProtoGalaxyProver_::compute_full_honk_evaluations"); - auto instance_size = instance_polynomials.get_polynomial_size(); - std::vector full_honk_evaluations(instance_size); - std::vector linearly_dependent_contribution_accumulators = parallel_for_heuristic( - instance_size, - /*accumulator default*/ FF(0), - [&](size_t row, FF& linearly_dependent_contribution_accumulator) { - auto row_evaluations = instance_polynomials.get_row(row); - RelationEvaluations relation_evaluations; - Utils::zero_elements(relation_evaluations); - - Utils::template accumulate_relation_evaluations<>( - row_evaluations, relation_evaluations, relation_parameters, FF(1)); - - auto output = FF(0); - auto running_challenge = FF(1); - Utils::scale_and_batch_elements( - relation_evaluations, alpha, running_challenge, output, linearly_dependent_contribution_accumulator); - - full_honk_evaluations[row] = output; - }, - thread_heuristics::ALWAYS_MULTITHREAD); - full_honk_evaluations[0] += sum(linearly_dependent_contribution_accumulators); - return full_honk_evaluations; -} - -// See protogalaxy_prover.hpp for details -template -std::vector::FF> ProtoGalaxyProver_< - ProverInstances_>::construct_coefficients_tree(const std::vector& betas, - const std::vector& deltas, - const std::vector>& prev_level_coeffs, - size_t level) -{ - if (level == betas.size()) { - return prev_level_coeffs[0]; - } - - auto degree = level + 1; - auto prev_level_width = prev_level_coeffs.size(); - std::vector> level_coeffs(prev_level_width / 2, std::vector(degree + 1, 0)); - parallel_for_heuristic( - prev_level_width / 2, - [&](size_t parent) { - size_t node = parent * 2; - std::copy(prev_level_coeffs[node].begin(), prev_level_coeffs[node].end(), level_coeffs[parent].begin()); - for (size_t d = 0; d < degree; d++) { - level_coeffs[parent][d] += prev_level_coeffs[node + 1][d] * betas[level]; - level_coeffs[parent][d + 1] += prev_level_coeffs[node + 1][d] * deltas[level]; - } - }, - /* overestimate */ thread_heuristics::FF_MULTIPLICATION_COST * degree * 3); - return construct_coefficients_tree(betas, deltas, level_coeffs, level + 1); -} - -// See protogalaxy_prover.hpp for details -template -std::vector::FF> ProtoGalaxyProver_< - ProverInstances_>::construct_perturbator_coefficients(const std::vector& betas, - const std::vector& deltas, - const std::vector& full_honk_evaluations) -{ - auto width = full_honk_evaluations.size(); - std::vector> first_level_coeffs(width / 2, std::vector(2, 0)); - parallel_for_heuristic( - width / 2, - [&](size_t parent) { - size_t node = parent * 2; - first_level_coeffs[parent][0] = full_honk_evaluations[node] + full_honk_evaluations[node + 1] * betas[0]; - first_level_coeffs[parent][1] = full_honk_evaluations[node + 1] * deltas[0]; - }, - /* overestimate */ thread_heuristics::FF_MULTIPLICATION_COST * 3); - return construct_coefficients_tree(betas, deltas, first_level_coeffs); -} - -// See protogalaxy_prover.hpp for details -template -LegacyPolynomial::FF> ProtoGalaxyProver_< - ProverInstances_>::compute_perturbator(const std::shared_ptr accumulator, const std::vector& deltas) -{ - BB_OP_COUNT_TIME(); - auto full_honk_evaluations = compute_full_honk_evaluations( - accumulator->proving_key.polynomials, accumulator->alphas, accumulator->relation_parameters); - const auto betas = accumulator->gate_challenges; - assert(betas.size() == deltas.size()); - auto coeffs = construct_perturbator_coefficients(betas, deltas, full_honk_evaluations); - return LegacyPolynomial(coeffs); -} - -// See protogalaxy_prover.hpp for details -template -void ProtoGalaxyProver_::deoptimise_univariates( - const OptimisedTupleOfTuplesOfUnivariates& optimised_univariate_accumulators, - TupleOfTuplesOfUnivariates& new_univariate_accumulators) -{ - auto deoptimise = [&](auto& element) { - auto& optimised_element = std::get(std::get(optimised_univariate_accumulators)); - element = optimised_element.convert(); - }; - - Utils::template apply_to_tuple_of_tuples<0, 0>(new_univariate_accumulators, deoptimise); -} - -template -ProtoGalaxyProver_::ExtendedUnivariateWithRandomization ProtoGalaxyProver_< - ProverInstances_>::batch_over_relations(TupleOfTuplesOfUnivariates& univariate_accumulators, - const CombinedRelationSeparator& alpha) -{ - auto result = std::get<0>(std::get<0>(univariate_accumulators)) - .template extend_to(); - size_t idx = 0; - auto scale_and_sum = [&](auto& element) { - auto extended = element.template extend_to(); - extended *= alpha[idx]; - result += extended; - idx++; - }; - - Utils::template apply_to_tuple_of_tuples<0, 1>(univariate_accumulators, scale_and_sum); - Utils::zero_univariates(univariate_accumulators); - - return result; -} - -// See protogalaxy_prover.hpp for details -template -Univariate::FF, - ProverInstances_::BATCHED_EXTENDED_LENGTH, - ProverInstances_::NUM> -ProtoGalaxyProver_::compute_combiner_quotient(const FF compressed_perturbator, - ExtendedUnivariateWithRandomization combiner) -{ - std::array combiner_quotient_evals = {}; - - constexpr FF inverse_two = FF(2).invert(); - constexpr FF inverse_six = FF(6).invert(); - for (size_t point = ProverInstances::NUM; point < combiner.size(); point++) { - auto idx = point - ProverInstances::NUM; - FF lagrange_0; - FF vanishing_polynomial; - if constexpr (ProverInstances::NUM == 2) { - lagrange_0 = FF(1) - FF(point); - vanishing_polynomial = FF(point) * (FF(point) - 1); - } else if constexpr (ProverInstances::NUM == 3) { - lagrange_0 = (FF(1) - FF(point)) * (FF(2) - FF(point)) * inverse_two; - vanishing_polynomial = FF(point) * (FF(point) - 1) * (FF(point) - 2); - } else if constexpr (ProverInstances::NUM == 4) { - lagrange_0 = (FF(1) - FF(point)) * (FF(2) - FF(point)) * (FF(3) - FF(point)) * inverse_six; - vanishing_polynomial = FF(point) * (FF(point) - 1) * (FF(point) - 2) * (FF(point) - 3); - } - static_assert(ProverInstances::NUM < 5); - - combiner_quotient_evals[idx] = - (combiner.value_at(point) - compressed_perturbator * lagrange_0) * vanishing_polynomial.invert(); - } - - Univariate combiner_quotient( - combiner_quotient_evals); - return combiner_quotient; -} - -// See protogalaxy_prover.hpp for details -template -void ProtoGalaxyProver_::combine_relation_parameters(ProverInstances& instances) -{ - size_t param_idx = 0; - auto to_fold = instances.relation_parameters.get_to_fold(); - auto to_fold_optimised = instances.optimised_relation_parameters.get_to_fold(); - for (auto [folded_parameter, optimised_folded_parameter] : zip_view(to_fold, to_fold_optimised)) { - Univariate tmp(0); - size_t instance_idx = 0; - for (auto& instance : instances) { - tmp.value_at(instance_idx) = instance->relation_parameters.get_to_fold()[param_idx]; - instance_idx++; - } - folded_parameter = tmp.template extend_to(); - optimised_folded_parameter = - tmp.template extend_to(); - param_idx++; - } -} - -// See protogalaxy_prover.hpp for details -template void ProtoGalaxyProver_::combine_alpha(ProverInstances& instances) -{ - size_t alpha_idx = 0; - for (auto& alpha : instances.alphas) { - Univariate tmp; - size_t instance_idx = 0; - for (auto& instance : instances) { - tmp.value_at(instance_idx) = instance->alphas[alpha_idx]; - instance_idx++; - } - alpha = tmp.template extend_to(); - alpha_idx++; - } -} - template void ProtoGalaxyProver_::finalise_and_send_instance(std::shared_ptr instance, const std::string& domain_separator) @@ -248,34 +42,6 @@ template void ProtoGalaxyProver_::prepa * TODO(https://github.com/AztecProtocol/barretenberg/issues/764): Generalize the vanishing polynomial formula * and the computation of Lagrange basis for k instances */ -template -std::pair> -ProtoGalaxyProver_::_compute_vanishing_polynomial_and_lagranges(const FF& challenge) -{ - FF vanishing_polynomial_at_challenge; - std::array lagranges; - constexpr FF inverse_two = FF(2).invert(); - - if constexpr (ProverInstances::NUM == 2) { - vanishing_polynomial_at_challenge = challenge * (challenge - FF(1)); - lagranges = { FF(1) - challenge, challenge }; - } else if constexpr (ProverInstances::NUM == 3) { - vanishing_polynomial_at_challenge = challenge * (challenge - FF(1)) * (challenge - FF(2)); - lagranges = { (FF(1) - challenge) * (FF(2) - challenge) * inverse_two, - challenge * (FF(2) - challenge), - challenge * (challenge - FF(1)) / FF(2) }; - } else if constexpr (ProverInstances::NUM == 4) { - constexpr FF inverse_six = FF(6).invert(); - vanishing_polynomial_at_challenge = challenge * (challenge - FF(1)) * (challenge - FF(2)) * (challenge - FF(3)); - lagranges = { (FF(1) - challenge) * (FF(2) - challenge) * (FF(3) - challenge) * inverse_six, - challenge * (FF(2) - challenge) * (FF(3) - challenge) * inverse_two, - challenge * (challenge - FF(1)) * (FF(3) - challenge) * inverse_two, - challenge * (challenge - FF(1)) * (challenge - FF(2)) * inverse_six }; - } - static_assert(ProverInstances::NUM < 5); - - return { vanishing_polynomial_at_challenge, lagranges }; -} template std::shared_ptr ProtoGalaxyProver_::compute_next_accumulator( @@ -284,8 +50,10 @@ std::shared_ptr ProtoGalaxyProver_; + auto combiner_quotient_at_challenge = combiner_quotient.evaluate(challenge); - auto [vanishing_polynomial_at_challenge, lagranges] = _compute_vanishing_polynomial_and_lagranges(challenge); + auto [vanishing_polynomial_at_challenge, lagranges] = Fun::compute_vanishing_polynomial_and_lagranges(challenge); // TODO(https://github.com/AztecProtocol/barretenberg/issues/881): bad pattern auto next_accumulator = std::move(instances[0]); @@ -345,6 +113,8 @@ template void ProtoGalaxyProver_::prepa template void ProtoGalaxyProver_::perturbator_round() { BB_OP_COUNT_TIME_NAME("ProtoGalaxyProver_::perturbator_round"); + + using Fun = ProtogalaxyProverInternal; state.accumulator = get_accumulator(); FF delta = transcript->template get_challenge("delta"); state.deltas = compute_round_challenge_pows(state.accumulator->proving_key.log_circuit_size, delta); @@ -352,7 +122,7 @@ template void ProtoGalaxyProver_::pertu LegacyPolynomial(state.accumulator->proving_key.log_circuit_size + 1); // initialize to all zeros // compute perturbator only if this is not the first round and has an accumulator if (state.accumulator->is_accumulator) { - state.perturbator = compute_perturbator(state.accumulator, state.deltas); + state.perturbator = Fun::compute_perturbator(state.accumulator, state.deltas); // Prover doesn't send the constant coefficient of F because this is supposed to be equal to the target sum of // the accumulator which the folding verifier has from the previous iteration. for (size_t idx = 1; idx <= state.accumulator->proving_key.log_circuit_size; idx++) { @@ -364,16 +134,18 @@ template void ProtoGalaxyProver_::pertu template void ProtoGalaxyProver_::combiner_quotient_round() { BB_OP_COUNT_TIME_NAME("ProtoGalaxyProver_::combiner_quotient_round"); + + using Fun = ProtogalaxyProverInternal; auto perturbator_challenge = transcript->template get_challenge("perturbator_challenge"); instances.next_gate_challenges = update_gate_challenges(perturbator_challenge, state.accumulator->gate_challenges, state.deltas); - combine_relation_parameters(instances); - combine_alpha(instances); + Fun::combine_relation_parameters(instances); + Fun::combine_alpha(instances); auto pow_polynomial = PowPolynomial(instances.next_gate_challenges); - auto combiner = compute_combiner(instances, pow_polynomial); + auto combiner = Fun::compute_combiner(instances, pow_polynomial, state.optimised_univariate_accumulators); state.compressed_perturbator = state.perturbator.evaluate(perturbator_challenge); - state.combiner_quotient = compute_combiner_quotient(state.compressed_perturbator, combiner); + state.combiner_quotient = Fun::compute_combiner_quotient(state.compressed_perturbator, combiner); for (size_t idx = ProverInstances::NUM; idx < ProverInstances::BATCHED_EXTENDED_LENGTH; idx++) { transcript->send_to_verifier("combiner_quotient_" + std::to_string(idx), state.combiner_quotient.value_at(idx)); diff --git a/barretenberg/cpp/src/barretenberg/protogalaxy/protogalaxy_prover_internal.hpp b/barretenberg/cpp/src/barretenberg/protogalaxy/protogalaxy_prover_internal.hpp new file mode 100644 index 00000000000..ecddd061331 --- /dev/null +++ b/barretenberg/cpp/src/barretenberg/protogalaxy/protogalaxy_prover_internal.hpp @@ -0,0 +1,501 @@ +#pragma once +#include "barretenberg/common/container.hpp" +#include "barretenberg/common/op_count.hpp" +#include "barretenberg/common/thread.hpp" +#include "barretenberg/protogalaxy/prover_verifier_shared.hpp" +#include "barretenberg/relations/relation_parameters.hpp" +#include "barretenberg/relations/relation_types.hpp" +#include "barretenberg/relations/utils.hpp" +#include "barretenberg/ultra_honk/oink_prover.hpp" + +namespace bb { + +/** + * @brief A purely static class (never add state to this!) consisting of functions used by the Protogalaxy prover. + * + * @tparam ProverInstances_ + */ +template class ProtogalaxyProverInternal { + public: + using ProverInstances = ProverInstances_; + using Flavor = typename ProverInstances::Flavor; + using FF = typename Flavor::FF; + using Instance = typename ProverInstances::Instance; + using RelationUtils = bb::RelationUtils; + using ProverPolynomials = typename Flavor::ProverPolynomials; + using Relations = typename Flavor::Relations; + using RelationSeparator = typename Flavor::RelationSeparator; + using CombinedRelationSeparator = typename ProverInstances::RelationSeparator; + + // The length of ExtendedUnivariate is the largest length (==max_relation_degree + 1) of a univariate polynomial + // obtained by composing a relation with folded instance + relation parameters . + using ExtendedUnivariate = Univariate; + // Represents the total length of the combiner univariate, obtained by combining the already folded relations with + // the folded relation batching challenge. + using ExtendedUnivariateWithRandomization = + Univariate; + using ExtendedUnivariates = typename Flavor::template ProverUnivariates; + using OptimisedExtendedUnivariates = + typename Flavor::template OptimisedProverUnivariates; + + using TupleOfTuplesOfUnivariates = + typename Flavor::template ProtogalaxyTupleOfTuplesOfUnivariates; + using OptimisedTupleOfTuplesOfUnivariates = + typename Flavor::template OptimisedProtogalaxyTupleOfTuplesOfUnivariates; + using RelationEvaluations = typename Flavor::TupleOfArraysOfValues; + + static constexpr size_t NUM_SUBRELATIONS = ProverInstances::NUM_SUBRELATIONS; + + /** + * @brief Compute the values of the full Honk relation at each row in the execution trace, representing f_i(ω) in + * the ProtoGalaxy paper, given the evaluations of all the prover polynomials and \vec{α} (the batching challenges + * that help establishing each subrelation is independently valid in Honk - from the Plonk paper, DO NOT confuse + * with α in ProtoGalaxy). + * + * @details When folding Mega instances, one of the relations is linearly dependent. We define such relations + * as acting on the entire execution trace and hence requiring to be accumulated separately as we iterate over each + * row. At the end of the function, the linearly dependent contribution is accumulated at index 0 representing the + * sum f_0(ω) + α_j*g(ω) where f_0 represents the full honk evaluation at row 0, g(ω) is the linearly dependent + * subrelation and α_j is its corresponding batching challenge. + */ + static std::vector compute_full_honk_evaluations(const ProverPolynomials& instance_polynomials, + const RelationSeparator& alpha, + const RelationParameters& relation_parameters) + + { + BB_OP_COUNT_TIME_NAME("ProtoGalaxyProver_::compute_full_honk_evaluations"); + auto instance_size = instance_polynomials.get_polynomial_size(); + std::vector full_honk_evaluations(instance_size); + std::vector linearly_dependent_contribution_accumulators = parallel_for_heuristic( + instance_size, + /*accumulator default*/ FF(0), + [&](size_t row, FF& linearly_dependent_contribution_accumulator) { + auto row_evaluations = instance_polynomials.get_row(row); + RelationEvaluations relation_evaluations; + RelationUtils::zero_elements(relation_evaluations); + + RelationUtils::template accumulate_relation_evaluations<>( + row_evaluations, relation_evaluations, relation_parameters, FF(1)); + + auto output = FF(0); + auto running_challenge = FF(1); + RelationUtils::scale_and_batch_elements(relation_evaluations, + alpha, + running_challenge, + output, + linearly_dependent_contribution_accumulator); + + full_honk_evaluations[row] = output; + }, + thread_heuristics::ALWAYS_MULTITHREAD); + full_honk_evaluations[0] += sum(linearly_dependent_contribution_accumulators); + return full_honk_evaluations; + } + + /** + * @brief Recursively compute the parent nodes of each level in the tree, starting from the leaves. Note that at + * each level, the resulting parent nodes will be polynomials of degree (level+1) because we multiply by an + * additional factor of X. + */ + static std::vector construct_coefficients_tree(const std::vector& betas, + const std::vector& deltas, + const std::vector>& prev_level_coeffs, + size_t level = 1) + { + if (level == betas.size()) { + return prev_level_coeffs[0]; + } + + auto degree = level + 1; + auto prev_level_width = prev_level_coeffs.size(); + std::vector> level_coeffs(prev_level_width / 2, std::vector(degree + 1, 0)); + parallel_for_heuristic( + prev_level_width / 2, + [&](size_t parent) { + size_t node = parent * 2; + std::copy(prev_level_coeffs[node].begin(), prev_level_coeffs[node].end(), level_coeffs[parent].begin()); + for (size_t d = 0; d < degree; d++) { + level_coeffs[parent][d] += prev_level_coeffs[node + 1][d] * betas[level]; + level_coeffs[parent][d + 1] += prev_level_coeffs[node + 1][d] * deltas[level]; + } + }, + /* overestimate */ thread_heuristics::FF_MULTIPLICATION_COST * degree * 3); + return construct_coefficients_tree(betas, deltas, level_coeffs, level + 1); + } + + /** + * @brief We construct the coefficients of the perturbator polynomial in O(n) time following the technique in + * Claim 4.4. Consider a binary tree whose leaves are the evaluations of the full Honk relation at each row in the + * execution trace. The subsequent levels in the tree are constructed using the following technique: At level i in + * the tree, label the branch connecting the left node n_l to its parent by 1 and for the right node n_r by β_i + + * δ_i X. The value of the parent node n will be constructed as n = n_l + n_r * (β_i + δ_i X). Recurse over each + * layer until the root is reached which will correspond to the perturbator polynomial F(X). + * TODO(https://github.com/AztecProtocol/barretenberg/issues/745): make computation of perturbator more memory + * efficient, operate in-place and use std::resize; add multithreading + */ + static std::vector construct_perturbator_coefficients(const std::vector& betas, + const std::vector& deltas, + const std::vector& full_honk_evaluations) + { + auto width = full_honk_evaluations.size(); + std::vector> first_level_coeffs(width / 2, std::vector(2, 0)); + parallel_for_heuristic( + width / 2, + [&](size_t parent) { + size_t node = parent * 2; + first_level_coeffs[parent][0] = + full_honk_evaluations[node] + full_honk_evaluations[node + 1] * betas[0]; + first_level_coeffs[parent][1] = full_honk_evaluations[node + 1] * deltas[0]; + }, + /* overestimate */ thread_heuristics::FF_MULTIPLICATION_COST * 3); + return construct_coefficients_tree(betas, deltas, first_level_coeffs); + } + + /** + * @brief Construct the power perturbator polynomial F(X) in coefficient form from the accumulator, representing the + * relaxed instance. + * + * + */ + static LegacyPolynomial compute_perturbator(std::shared_ptr accumulator, + const std::vector& deltas) + { + BB_OP_COUNT_TIME(); + auto full_honk_evaluations = compute_full_honk_evaluations( + accumulator->proving_key.polynomials, accumulator->alphas, accumulator->relation_parameters); + const auto betas = accumulator->gate_challenges; + assert(betas.size() == deltas.size()); + auto coeffs = construct_perturbator_coefficients(betas, deltas, full_honk_evaluations); + return LegacyPolynomial(coeffs); + } + + /** + * @brief Prepare a univariate polynomial for relation execution in one step of the main loop in folded instance + * construction. + * @details For a fixed prover polynomial index, extract that polynomial from each instance in Instances. From + *each polynomial, extract the value at row_idx. Use these values to create a univariate polynomial, and then + *extend (i.e., compute additional evaluations at adjacent domain values) as needed. + * @todo TODO(https://github.com/AztecProtocol/barretenberg/issues/751) Optimize memory + */ + + template + static void extend_univariates( + std::conditional_t& extended_univariates, + const ProverInstances& instances, + const size_t row_idx) + { + auto base_univariates = instances.template row_to_univariates(row_idx); + for (auto [extended_univariate, base_univariate] : zip_view(extended_univariates.get_all(), base_univariates)) { + extended_univariate = base_univariate.template extend_to(); + } + } + + /** + * @brief Add the value of each relation over univariates to an appropriate accumulator + * + * @tparam TupleOfTuplesOfUnivariates_ A tuple of univariate accumulators, where the univariates may be optimized to + * avoid computation on some indices. + * @tparam ExtendedUnivariates_ T + * @tparam Parameters relation parameters type + * @tparam relation_idx The index of the relation + * @param univariate_accumulators + * @param extended_univariates + * @param relation_parameters + * @param scaling_factor + */ + template + static void accumulate_relation_univariates(TupleOfTuplesOfUnivariates_& univariate_accumulators, + const ExtendedUnivariates_& extended_univariates, + const Parameters& relation_parameters, + const FF& scaling_factor) + { + using Relation = std::tuple_element_t; + + // Check if the relation is skippable to speed up accumulation + if constexpr (!isSkippable) { + // If not, accumulate normally + Relation::accumulate(std::get(univariate_accumulators), + extended_univariates, + relation_parameters, + scaling_factor); + } else { + // If so, only compute the contribution if the relation is active + if (!Relation::skip(extended_univariates)) { + Relation::accumulate(std::get(univariate_accumulators), + extended_univariates, + relation_parameters, + scaling_factor); + } + } + + // Repeat for the next relation. + if constexpr (relation_idx + 1 < Flavor::NUM_RELATIONS) { + accumulate_relation_univariates( + univariate_accumulators, extended_univariates, relation_parameters, scaling_factor); + } + } + + /** + * @brief Compute the combiner polynomial $G$ in the Protogalaxy paper + * @details We have implemented an optimization that (eg in the case where we fold one instance-witness pair at a + * time) assumes the value G(1) is 0, which is true in the case where the witness to be folded is valid. + * @todo (https://github.com/AztecProtocol/barretenberg/issues/968) Make combiner tests better + * + * @tparam skip_zero_computations whether to use the the optimization that skips computing zero. + * @param instances + * @param pow_betas + * @return ExtendedUnivariateWithRandomization + */ + template + static ExtendedUnivariateWithRandomization compute_combiner(const ProverInstances& instances, + PowPolynomial& pow_betas, + TupleOfTuples& univariate_accumulators) + { + BB_OP_COUNT_TIME(); + + // Whether to use univariates whose operators ignore some values which an honest prover would compute to be zero + constexpr bool skip_zero_computations = std::same_as; + + size_t common_instance_size = instances[0]->proving_key.circuit_size; + pow_betas.compute_values(instances[0]->proving_key.log_circuit_size); + // Determine number of threads for multithreading. + // Note: Multithreading is "on" for every round but we reduce the number of threads from the max available based + // on a specified minimum number of iterations per thread. This eventually leads to the use of a + // single thread. For now we use a power of 2 number of threads simply to ensure the round size is evenly + // divided. + size_t max_num_threads = get_num_cpus_pow2(); // number of available threads (power of 2) + size_t min_iterations_per_thread = 1 << 6; // min number of iterations for which we'll spin up a unique thread + size_t desired_num_threads = common_instance_size / min_iterations_per_thread; + size_t num_threads = std::min(desired_num_threads, max_num_threads); // fewer than max if justified + num_threads = num_threads > 0 ? num_threads : 1; // ensure num threads is >= 1 + size_t iterations_per_thread = common_instance_size / num_threads; // actual iterations per thread + + // Univariates are optimised for usual PG, but we need the unoptimised version for tests (it's a version that + // doesn't skip computation), so we need to define types depending on the template instantiation + using ThreadAccumulators = TupleOfTuples; + using ExtendedUnivatiatesType = + std::conditional_t; + + // Construct univariate accumulator containers; one per thread + std::vector thread_univariate_accumulators(num_threads); + for (auto& accum : thread_univariate_accumulators) { + // just normal relation lengths + RelationUtils::zero_univariates(accum); + } + + // Construct extended univariates containers; one per thread + std::vector extended_univariates; + extended_univariates.resize(num_threads); + + // Accumulate the contribution from each sub-relation + parallel_for(num_threads, [&](size_t thread_idx) { + size_t start = thread_idx * iterations_per_thread; + size_t end = (thread_idx + 1) * iterations_per_thread; + + for (size_t idx = start; idx < end; idx++) { + // Instantiate univariates, possibly with skipping toto ignore computation in those indices (they are + // still available for skipping relations, but all derived univariate will ignore those evaluations) + // No need to initialise extended_univariates to 0, as it's assigned to. + constexpr size_t skip_count = skip_zero_computations ? ProverInstances::NUM - 1 : 0; + extend_univariates(extended_univariates[thread_idx], instances, idx); + + FF pow_challenge = pow_betas[idx]; + + // Accumulate the i-th row's univariate contribution. Note that the relation parameters passed to + // this function have already been folded. Moreover, linear-dependent relations that act over the + // entire execution trace rather than on rows, will not be multiplied by the pow challenge. + if constexpr (skip_zero_computations) { + accumulate_relation_univariates( + thread_univariate_accumulators[thread_idx], + extended_univariates[thread_idx], + instances.optimised_relation_parameters, // these parameters have already been folded + pow_challenge); + } else { + accumulate_relation_univariates( + thread_univariate_accumulators[thread_idx], + extended_univariates[thread_idx], + instances.relation_parameters, // these parameters have already been folded + pow_challenge); + } + } + }); + + RelationUtils::zero_univariates(univariate_accumulators); + // Accumulate the per-thread univariate accumulators into a single set of accumulators + for (auto& accumulators : thread_univariate_accumulators) { + RelationUtils::add_nested_tuples(univariate_accumulators, accumulators); + } + // This does nothing if TupleOfTuples is TupleOfTuplesOfUnivariates + TupleOfTuplesOfUnivariates deoptimized_univariates = deoptimise_univariates(univariate_accumulators); + // Batch the univariate contributions from each sub-relation to obtain the round univariate + return batch_over_relations(deoptimized_univariates, instances.alphas); + } + + /** + * @brief Convert univariates from optimised form to regular + * + * @details We need to convert before we batch relations, since optimised versions don't have enough information to + * extend the univariates to maximum length + * + * @param optimised_univariate_accumulators + * @param new_univariate_accumulators + */ + template + static TupleOfTuplesOfUnivariates deoptimise_univariates(const PossiblyOptimisedTupleOfTuplesOfUnivariates& tup) + { + // If input does not have optimized operators, return the input + if constexpr (std::same_as) { + return tup; + } + + auto deoptimise = [&](auto& element) { + auto& optimised_element = std::get(std::get(tup)); + element = optimised_element.convert(); + }; + + TupleOfTuplesOfUnivariates result; + RelationUtils::template apply_to_tuple_of_tuples<0, 0>(result, deoptimise); + return result; + } + + static ExtendedUnivariateWithRandomization batch_over_relations(TupleOfTuplesOfUnivariates& univariate_accumulators, + const CombinedRelationSeparator& alpha) + { + auto result = std::get<0>(std::get<0>(univariate_accumulators)) + .template extend_to(); + size_t idx = 0; + auto scale_and_sum = [&](auto& element) { + auto extended = element.template extend_to(); + extended *= alpha[idx]; + result += extended; + idx++; + }; + + RelationUtils::template apply_to_tuple_of_tuples<0, 1>(univariate_accumulators, scale_and_sum); + RelationUtils::zero_univariates(univariate_accumulators); + + return result; + } + + static std::pair> + compute_vanishing_polynomial_and_lagranges(const FF& challenge) + { + FF vanishing_polynomial_at_challenge; + std::array lagranges; + constexpr FF inverse_two = FF(2).invert(); + + if constexpr (ProverInstances::NUM == 2) { + vanishing_polynomial_at_challenge = challenge * (challenge - FF(1)); + lagranges = { FF(1) - challenge, challenge }; + } else if constexpr (ProverInstances::NUM == 3) { + vanishing_polynomial_at_challenge = challenge * (challenge - FF(1)) * (challenge - FF(2)); + lagranges = { (FF(1) - challenge) * (FF(2) - challenge) * inverse_two, + challenge * (FF(2) - challenge), + challenge * (challenge - FF(1)) / FF(2) }; + } else if constexpr (ProverInstances::NUM == 4) { + constexpr FF inverse_six = FF(6).invert(); + vanishing_polynomial_at_challenge = + challenge * (challenge - FF(1)) * (challenge - FF(2)) * (challenge - FF(3)); + lagranges = { (FF(1) - challenge) * (FF(2) - challenge) * (FF(3) - challenge) * inverse_six, + challenge * (FF(2) - challenge) * (FF(3) - challenge) * inverse_two, + challenge * (challenge - FF(1)) * (FF(3) - challenge) * inverse_two, + challenge * (challenge - FF(1)) * (challenge - FF(2)) * inverse_six }; + } + static_assert(ProverInstances::NUM < 5); + + return { vanishing_polynomial_at_challenge, lagranges }; + } + + /** + * @brief Compute the combiner quotient defined as $K$ polynomial in the paper. + * + * TODO(https://github.com/AztecProtocol/barretenberg/issues/764): generalize the computation of vanishing + * polynomials and Lagrange basis and use batch_invert. + * + */ + static Univariate compute_combiner_quotient( + FF compressed_perturbator, ExtendedUnivariateWithRandomization combiner) + { + std::array combiner_quotient_evals = {}; + + constexpr FF inverse_two = FF(2).invert(); + constexpr FF inverse_six = FF(6).invert(); + for (size_t point = ProverInstances::NUM; point < combiner.size(); point++) { + auto idx = point - ProverInstances::NUM; + FF lagrange_0; + FF vanishing_polynomial; + if constexpr (ProverInstances::NUM == 2) { + lagrange_0 = FF(1) - FF(point); + vanishing_polynomial = FF(point) * (FF(point) - 1); + } else if constexpr (ProverInstances::NUM == 3) { + lagrange_0 = (FF(1) - FF(point)) * (FF(2) - FF(point)) * inverse_two; + vanishing_polynomial = FF(point) * (FF(point) - 1) * (FF(point) - 2); + } else if constexpr (ProverInstances::NUM == 4) { + lagrange_0 = (FF(1) - FF(point)) * (FF(2) - FF(point)) * (FF(3) - FF(point)) * inverse_six; + vanishing_polynomial = FF(point) * (FF(point) - 1) * (FF(point) - 2) * (FF(point) - 3); + } + static_assert(ProverInstances::NUM < 5); + + combiner_quotient_evals[idx] = + (combiner.value_at(point) - compressed_perturbator * lagrange_0) * vanishing_polynomial.invert(); + } + + Univariate combiner_quotient( + combiner_quotient_evals); + return combiner_quotient; + } + + /** + * @brief Combine each relation parameter, in part, from all the instances into univariates, used in the + * computation of combiner. + * @details For a given relation parameter type, extract that parameter from each instance, place the values in + * a univariate (i.e., sum them against an appropriate univariate Lagrange basis) and then extended as needed + * during the constuction of the combiner. + */ + static void combine_relation_parameters(ProverInstances& instances) + { + size_t param_idx = 0; + auto to_fold = instances.relation_parameters.get_to_fold(); + auto to_fold_optimised = instances.optimised_relation_parameters.get_to_fold(); + for (auto [folded_parameter, optimised_folded_parameter] : zip_view(to_fold, to_fold_optimised)) { + Univariate tmp(0); + size_t instance_idx = 0; + for (auto& instance : instances) { + tmp.value_at(instance_idx) = instance->relation_parameters.get_to_fold()[param_idx]; + instance_idx++; + } + folded_parameter = tmp.template extend_to(); + optimised_folded_parameter = + tmp.template extend_to(); + param_idx++; + } + } + + /** + * @brief Combine the relation batching parameters (alphas) from each instance into a univariate, used in the + * computation of combiner. + */ + static void combine_alpha(ProverInstances& instances) + { + size_t alpha_idx = 0; + for (auto& alpha : instances.alphas) { + Univariate tmp; + size_t instance_idx = 0; + for (auto& instance : instances) { + tmp.value_at(instance_idx) = instance->alphas[alpha_idx]; + instance_idx++; + } + alpha = tmp.template extend_to(); + alpha_idx++; + } + } +}; +} // namespace bb \ No newline at end of file diff --git a/barretenberg/cpp/src/barretenberg/protogalaxy/protogalaxy_prover_mega.cpp b/barretenberg/cpp/src/barretenberg/protogalaxy/protogalaxy_prover_mega.cpp index 287ea4861d7..2d96969cf8d 100644 --- a/barretenberg/cpp/src/barretenberg/protogalaxy/protogalaxy_prover_mega.cpp +++ b/barretenberg/cpp/src/barretenberg/protogalaxy/protogalaxy_prover_mega.cpp @@ -1,5 +1,6 @@ // Note: this is split up from protogalaxy_prover_impl.hpp for compile performance reasons #include "barretenberg/flavor/flavor.hpp" +#include "barretenberg/sumcheck/instance/instances.hpp" #include "barretenberg/ultra_honk/oink_prover.hpp" #include "protogalaxy_prover_impl.hpp" namespace bb { diff --git a/barretenberg/cpp/src/barretenberg/protogalaxy/protogalaxy_prover_ultra.cpp b/barretenberg/cpp/src/barretenberg/protogalaxy/protogalaxy_prover_ultra.cpp index 5084ec8824c..8cc9c4f768f 100644 --- a/barretenberg/cpp/src/barretenberg/protogalaxy/protogalaxy_prover_ultra.cpp +++ b/barretenberg/cpp/src/barretenberg/protogalaxy/protogalaxy_prover_ultra.cpp @@ -1,4 +1,5 @@ // Note: this is split up from protogalaxy_prover_impl.hpp for compile performance reasons +#include "barretenberg/sumcheck/instance/instances.hpp" #include "protogalaxy_prover_impl.hpp" // TODO(https://github.com/AztecProtocol/barretenberg/issues/1076) Remove this instantiation. diff --git a/barretenberg/cpp/src/barretenberg/sumcheck/instance/instances.hpp b/barretenberg/cpp/src/barretenberg/sumcheck/instance/instances.hpp index fdffcc15a4d..a6e4c324c1e 100644 --- a/barretenberg/cpp/src/barretenberg/sumcheck/instance/instances.hpp +++ b/barretenberg/cpp/src/barretenberg/sumcheck/instance/instances.hpp @@ -20,6 +20,7 @@ template struct ProverInstances_ { using RelationParameters = bb::RelationParameters>; using OptimisedRelationParameters = bb::RelationParameters>; using RelationSeparator = std::array, NUM_SUBRELATIONS - 1>; + ArrayType _data; RelationParameters relation_parameters; OptimisedRelationParameters optimised_relation_parameters;