-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
162 lines (133 loc) · 5.78 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import argparse
import torch
import numpy as np
import importlib
import logging
from transformers import AutoTokenizer
from src.common.registry import Registry
from src.common.configuration import get_dataset_configuration, get_model_configuration, get_trainer_configuration
from src.inference import InferenceEngine
from src.trainer import Trainer
from src.tokenizers.vlt5_tokenizers import VLT5TokenizerFast
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, default="dialogue_generation_vlt5",
help='Model to run')
parser.add_argument('--dataset_config', type=str, default="comics_dialogue_generation_easy",
help='Dataset config to use')
parser.add_argument('--trainer_config', type=str, default="vlt5",
help='Trainer params to use')
parser.add_argument('--dataset_dir', type=str, default="datasets/COMICS/",
help='Dataset directory path')
parser.add_argument('--mode', type=str, default="eval",
help='Execution mode ("training", "eval" or "inference")')
parser.add_argument('--load_checkpoint', type=str, default="runs/DialogueGenerationVLT5Model_comics_dialogue_generation_2022-06-03_00:19:53/models/epoch_10.pt",
help='Path to model checkpoint')
parser.add_argument('--batch_size', type=int, default=1,
help='Batch size')
parser.add_argument('--seed', type=int, default=42, help='Seed to use')
args = parser.parse_args()
return args
def main(args: argparse.Namespace) -> None:
logging.basicConfig(
format='%(levelname)s: %(message)s', level=logging.INFO)
torch.manual_seed(0)
np.random.seed(args.seed)
device = torch.device(
"cuda") if torch.cuda.is_available() else torch.device("cpu")
logging.info(f"SELECTED DEVICE: {device}")
# Configuration loading
model_config = get_model_configuration(args.model)
Registry.register("model_config", model_config)
dataset_config = get_dataset_configuration(args.dataset_config)
Registry.register("dataset_config", dataset_config)
logging.info(f"SELECTED MODEL: {model_config.classname}")
logging.info(f"SELECTED DATASET: {dataset_config.name}")
# Dataset preprocessing
tokenizer = None
if model_config.tokenizer:
if model_config.tokenizer == "vlt5":
tokenizer = VLT5TokenizerFast.from_pretrained(
model_config.backbone,
max_length=model_config.max_text_length,
do_lower_case=model_config.do_lower_case,
)
else:
tokenizer = AutoTokenizer.from_pretrained(model_config.tokenizer)
feature_extractor = None
if model_config.feature_extractor:
from transformers import BeitFeatureExtractor
feature_extractor = BeitFeatureExtractor.from_pretrained(
model_config.feature_extractor)
transform = None
if model_config.transforms:
raise NotImplementedError("Transforms are not implemented yet.")
dataset_kwargs = {}
if tokenizer:
dataset_kwargs["tokenizer"] = tokenizer
if feature_extractor:
dataset_kwargs["feature_extractor"] = feature_extractor
if transform:
dataset_kwargs["transform"] = transform
# Model loading
ModelClass = getattr(importlib.import_module(
f"src.models.{args.model}"), model_config.classname)
model = ModelClass(model_config, device).to(device)
if tokenizer:
model.tokenizer = tokenizer
# Load model checkpoint
checkpoint = None
if args.load_checkpoint is not None:
logging.info("Loading checkpoint.")
try:
checkpoint = torch.load(args.load_checkpoint, map_location=device)
except Exception as e:
logging.error("The checkpoint could not be loaded.")
print(e)
return
model.load_checkpoint(checkpoint["model_state_dict"])
if torch.cuda.device_count() > 1:
# TODO: Change to DistributedDataParallel
model = torch.nn.DataParallel(model)
if args.mode != "inference":
# Trainer specific configuration loading
trainer_config = get_trainer_configuration(args.trainer_config)
Registry.register("trainer_config", trainer_config)
# DataLoaders
create_dataloader = getattr(importlib.import_module(
f"src.datasets.{dataset_config.name}"), "create_dataloader")
train_dataloader, val_dataloader, test_dataloader = create_dataloader(
args.batch_size,
args.dataset_dir,
device,
dataset_config,
dataset_kwargs=dataset_kwargs
)
trainer = Trainer(model, train_dataloader, val_dataloader,
test_dataloader, device, trainer_config, checkpoint)
if args.mode == "train":
trainer.train(
trainer_config.epochs)
elif args.mode == "eval":
assert checkpoint is not None, "ERROR: No checkpoint provided."
trainer.eval()
else:
raise ValueError(
f"Unknown mode: {args.mode}. Please select one of the following: train, eval, inference")
else:
# DataLoaders
create_dataloader = getattr(importlib.import_module(
f"src.datasets.{dataset_config.name}"), "create_dataloader")
dataloader, _, _ = create_dataloader(
args.batch_size,
args.dataset_dir,
device,
dataset_config,
inference=True,
dataset_kwargs=dataset_kwargs
)
inference_engine = InferenceEngine(model, device)
inference_engine.run(dataloader)
if __name__ == "__main__":
args = parse_args()
main(args)