-
Notifications
You must be signed in to change notification settings - Fork 17.6k
/
AP_ESC_Telem.cpp
797 lines (697 loc) · 31.2 KB
/
AP_ESC_Telem.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AP_ESC_Telem.h"
#include <AP_HAL/AP_HAL.h>
#include <GCS_MAVLink/GCS.h>
#include <AP_Logger/AP_Logger.h>
#if HAL_WITH_ESC_TELEM
#include <AP_BoardConfig/AP_BoardConfig.h>
#include <AP_TemperatureSensor/AP_TemperatureSensor_config.h>
#include <AP_Math/AP_Math.h>
//#define ESC_TELEM_DEBUG
#define ESC_RPM_CHECK_TIMEOUT_US 210000UL // timeout for motor running validity
extern const AP_HAL::HAL& hal;
// table of user settable parameters
const AP_Param::GroupInfo AP_ESC_Telem::var_info[] = {
// @Param: _MAV_OFS
// @DisplayName: ESC Telemetry mavlink offset
// @Description: Offset to apply to ESC numbers when reporting as ESC_TELEMETRY packets over MAVLink. This allows high numbered motors to be displayed as low numbered ESCs for convenience on GCS displays. A value of 4 would send ESC on output 5 as ESC number 1 in ESC_TELEMETRY packets
// @Increment: 1
// @Range: 0 31
// @User: Standard
AP_GROUPINFO("_MAV_OFS", 1, AP_ESC_Telem, mavlink_offset, 0),
AP_GROUPEND
};
AP_ESC_Telem::AP_ESC_Telem()
{
if (_singleton) {
AP_HAL::panic("Too many AP_ESC_Telem instances");
}
_singleton = this;
#if !defined(IOMCU_FW)
AP_Param::setup_object_defaults(this, var_info);
#endif
}
// return the average motor RPM
float AP_ESC_Telem::get_average_motor_rpm(uint32_t servo_channel_mask) const
{
float rpm_avg = 0.0f;
uint8_t valid_escs = 0;
// average the rpm of each motor
for (uint8_t i = 0; i < ESC_TELEM_MAX_ESCS; i++) {
if (BIT_IS_SET(servo_channel_mask,i)) {
float rpm;
if (get_rpm(i, rpm)) {
rpm_avg += rpm;
valid_escs++;
}
}
}
if (valid_escs > 0) {
rpm_avg /= valid_escs;
}
return rpm_avg;
}
// return all the motor frequencies in Hz for dynamic filtering
uint8_t AP_ESC_Telem::get_motor_frequencies_hz(uint8_t nfreqs, float* freqs) const
{
uint8_t valid_escs = 0;
// average the rpm of each motor as reported by BLHeli and convert to Hz
for (uint8_t i = 0; i < ESC_TELEM_MAX_ESCS && valid_escs < nfreqs; i++) {
float rpm;
if (get_rpm(i, rpm)) {
freqs[valid_escs++] = rpm * (1.0f / 60.0f);
} else if (was_rpm_data_ever_reported(_rpm_data[i])) {
// if we have ever received data on an ESC, mark it as valid but with no data
// this prevents large frequency shifts when ESCs disappear
freqs[valid_escs++] = 0.0f;
}
}
return MIN(valid_escs, nfreqs);
}
// get mask of ESCs that sent valid telemetry and/or rpm data in the last
// ESC_TELEM_DATA_TIMEOUT_MS/ESC_RPM_DATA_TIMEOUT_US
uint32_t AP_ESC_Telem::get_active_esc_mask() const {
uint32_t ret = 0;
const uint32_t now = AP_HAL::millis();
uint32_t now_us = AP_HAL::micros();
for (uint8_t i = 0; i < ESC_TELEM_MAX_ESCS; i++) {
if (_telem_data[i].last_update_ms == 0 && !was_rpm_data_ever_reported(_rpm_data[i])) {
// have never seen telem from this ESC
continue;
}
if (_telem_data[i].stale(now)
&& !rpm_data_within_timeout(_rpm_data[i], now_us, ESC_RPM_DATA_TIMEOUT_US)) {
continue;
}
ret |= (1U << i);
}
return ret;
}
// return an active ESC for the purposes of reporting (e.g. in the OSD)
uint8_t AP_ESC_Telem::get_max_rpm_esc() const
{
uint32_t ret = 0;
float max_rpm = 0;
const uint32_t now = AP_HAL::millis();
const uint32_t now_us = AP_HAL::micros();
for (uint8_t i = 0; i < ESC_TELEM_MAX_ESCS; i++) {
if (_telem_data[i].last_update_ms == 0 && !was_rpm_data_ever_reported(_rpm_data[i])) {
// have never seen telem from this ESC
continue;
}
if (_telem_data[i].stale(now)
&& !rpm_data_within_timeout(_rpm_data[i], now_us, ESC_RPM_DATA_TIMEOUT_US)) {
continue;
}
if (_rpm_data[i].rpm > max_rpm) {
max_rpm = _rpm_data[i].rpm;
ret = i;
}
}
return ret;
}
// return number of active ESCs present
uint8_t AP_ESC_Telem::get_num_active_escs() const {
uint32_t active = get_active_esc_mask();
return __builtin_popcount(active);
}
// return the whether all the motors in servo_channel_mask are running
bool AP_ESC_Telem::are_motors_running(uint32_t servo_channel_mask, float min_rpm, float max_rpm) const
{
const uint32_t now = AP_HAL::micros();
for (uint8_t i = 0; i < ESC_TELEM_MAX_ESCS; i++) {
if (BIT_IS_SET(servo_channel_mask, i)) {
const volatile AP_ESC_Telem_Backend::RpmData& rpmdata = _rpm_data[i];
// we choose a relatively strict measure of health so that failsafe actions can rely on the results
if (!rpm_data_within_timeout(rpmdata, now, ESC_RPM_CHECK_TIMEOUT_US)) {
return false;
}
if (rpmdata.rpm < min_rpm) {
return false;
}
if ((max_rpm > 0) && (rpmdata.rpm > max_rpm)) {
return false;
}
}
}
return true;
}
// is telemetry active for the provided channel mask
bool AP_ESC_Telem::is_telemetry_active(uint32_t servo_channel_mask) const
{
for (uint8_t i = 0; i < ESC_TELEM_MAX_ESCS; i++) {
if (BIT_IS_SET(servo_channel_mask, i)) {
// no data received
if (get_last_telem_data_ms(i) == 0 && !was_rpm_data_ever_reported(_rpm_data[i])) {
return false;
}
}
}
return true;
}
// get an individual ESC's slewed rpm if available, returns true on success
bool AP_ESC_Telem::get_rpm(uint8_t esc_index, float& rpm) const
{
if (esc_index >= ESC_TELEM_MAX_ESCS) {
return false;
}
const volatile AP_ESC_Telem_Backend::RpmData& rpmdata = _rpm_data[esc_index];
if (is_zero(rpmdata.update_rate_hz)) {
return false;
}
const uint32_t now = AP_HAL::micros();
if (rpm_data_within_timeout(rpmdata, now, ESC_RPM_DATA_TIMEOUT_US)) {
const float slew = MIN(1.0f, (now - rpmdata.last_update_us) * rpmdata.update_rate_hz * (1.0f / 1e6f));
rpm = (rpmdata.prev_rpm + (rpmdata.rpm - rpmdata.prev_rpm) * slew);
#if AP_SCRIPTING_ENABLED
if ((1U<<esc_index) & rpm_scale_mask) {
rpm *= rpm_scale_factor[esc_index];
}
#endif
return true;
}
return false;
}
// get an individual ESC's raw rpm if available, returns true on success
bool AP_ESC_Telem::get_raw_rpm(uint8_t esc_index, float& rpm) const
{
if (esc_index >= ESC_TELEM_MAX_ESCS) {
return false;
}
const volatile AP_ESC_Telem_Backend::RpmData& rpmdata = _rpm_data[esc_index];
const uint32_t now = AP_HAL::micros();
if (!rpm_data_within_timeout(rpmdata, now, ESC_RPM_DATA_TIMEOUT_US)) {
return false;
}
rpm = rpmdata.rpm;
return true;
}
// get an individual ESC's temperature in centi-degrees if available, returns true on success
bool AP_ESC_Telem::get_temperature(uint8_t esc_index, int16_t& temp) const
{
const volatile AP_ESC_Telem_Backend::TelemetryData& telemdata = _telem_data[esc_index];
if (esc_index >= ESC_TELEM_MAX_ESCS
|| telemdata.stale()
|| !(telemdata.types & (AP_ESC_Telem_Backend::TelemetryType::TEMPERATURE | AP_ESC_Telem_Backend::TelemetryType::TEMPERATURE_EXTERNAL))) {
return false;
}
temp = telemdata.temperature_cdeg;
return true;
}
// get an individual motor's temperature in centi-degrees if available, returns true on success
bool AP_ESC_Telem::get_motor_temperature(uint8_t esc_index, int16_t& temp) const
{
const volatile AP_ESC_Telem_Backend::TelemetryData& telemdata = _telem_data[esc_index];
if (esc_index >= ESC_TELEM_MAX_ESCS
|| telemdata.stale()
|| !(telemdata.types & (AP_ESC_Telem_Backend::TelemetryType::MOTOR_TEMPERATURE | AP_ESC_Telem_Backend::TelemetryType::MOTOR_TEMPERATURE_EXTERNAL))) {
return false;
}
temp = telemdata.motor_temp_cdeg;
return true;
}
// get the highest ESC temperature in centi-degrees if available, returns true if there is valid data for at least one ESC
bool AP_ESC_Telem::get_highest_temperature(int16_t& temp) const
{
uint8_t valid_escs = 0;
for (uint8_t i = 0; i < ESC_TELEM_MAX_ESCS; i++) {
int16_t temp_temp;
if (get_temperature(i, temp_temp)) {
temp = MAX(temp, temp_temp);
valid_escs++;
}
}
return valid_escs > 0;
}
// get an individual ESC's current in Ampere if available, returns true on success
bool AP_ESC_Telem::get_current(uint8_t esc_index, float& amps) const
{
const volatile AP_ESC_Telem_Backend::TelemetryData& telemdata = _telem_data[esc_index];
if (esc_index >= ESC_TELEM_MAX_ESCS
|| telemdata.stale()
|| !(telemdata.types & AP_ESC_Telem_Backend::TelemetryType::CURRENT)) {
return false;
}
amps = telemdata.current;
return true;
}
// get an individual ESC's voltage in Volt if available, returns true on success
bool AP_ESC_Telem::get_voltage(uint8_t esc_index, float& volts) const
{
const volatile AP_ESC_Telem_Backend::TelemetryData& telemdata = _telem_data[esc_index];
if (esc_index >= ESC_TELEM_MAX_ESCS
|| telemdata.stale()
|| !(telemdata.types & AP_ESC_Telem_Backend::TelemetryType::VOLTAGE)) {
return false;
}
volts = telemdata.voltage;
return true;
}
// get an individual ESC's energy consumption in milli-Ampere.hour if available, returns true on success
bool AP_ESC_Telem::get_consumption_mah(uint8_t esc_index, float& consumption_mah) const
{
const volatile AP_ESC_Telem_Backend::TelemetryData& telemdata = _telem_data[esc_index];
if (esc_index >= ESC_TELEM_MAX_ESCS
|| telemdata.stale()
|| !(telemdata.types & AP_ESC_Telem_Backend::TelemetryType::CONSUMPTION)) {
return false;
}
consumption_mah = telemdata.consumption_mah;
return true;
}
// get an individual ESC's usage time in seconds if available, returns true on success
bool AP_ESC_Telem::get_usage_seconds(uint8_t esc_index, uint32_t& usage_s) const
{
const volatile AP_ESC_Telem_Backend::TelemetryData& telemdata = _telem_data[esc_index];
if (esc_index >= ESC_TELEM_MAX_ESCS
|| telemdata.stale()
|| !(telemdata.types & AP_ESC_Telem_Backend::TelemetryType::USAGE)) {
return false;
}
usage_s = telemdata.usage_s;
return true;
}
// send ESC telemetry messages over MAVLink
void AP_ESC_Telem::send_esc_telemetry_mavlink(uint8_t mav_chan)
{
#if HAL_GCS_ENABLED
if (!_have_data) {
// we've never had any data
return;
}
const uint32_t now = AP_HAL::millis();
const uint32_t now_us = AP_HAL::micros();
// loop through groups of 4 ESCs
const uint8_t esc_offset = constrain_int16(mavlink_offset, 0, ESC_TELEM_MAX_ESCS-1);
// ensure we send out partially-full groups:
const uint8_t num_idx = (ESC_TELEM_MAX_ESCS + 3) / 4;
for (uint8_t idx = 0; idx < num_idx; idx++) {
const uint8_t i = (next_idx + idx) % num_idx;
// return if no space in output buffer to send mavlink messages
if (!HAVE_PAYLOAD_SPACE((mavlink_channel_t)mav_chan, ESC_TELEMETRY_1_TO_4)) {
// not enough mavlink buffer space, start at this index next time
next_idx = i;
return;
}
bool all_stale = true;
for (uint8_t j=0; j<4; j++) {
const uint8_t esc_id = (i * 4 + j) + esc_offset;
if (esc_id < ESC_TELEM_MAX_ESCS &&
(!_telem_data[esc_id].stale(now) ||
rpm_data_within_timeout(_rpm_data[esc_id], now_us, ESC_RPM_DATA_TIMEOUT_US))) {
all_stale = false;
break;
}
}
if (all_stale) {
// skip this group of ESCs if no data to send
continue;
}
// arrays to hold output
mavlink_esc_telemetry_1_to_4_t s {};
// fill in output arrays
for (uint8_t j = 0; j < 4; j++) {
const uint8_t esc_id = (i * 4 + j) + esc_offset;
if (esc_id >= ESC_TELEM_MAX_ESCS) {
continue;
}
volatile AP_ESC_Telem_Backend::TelemetryData const &telemdata = _telem_data[esc_id];
s.temperature[j] = telemdata.temperature_cdeg / 100;
s.voltage[j] = constrain_float(telemdata.voltage * 100.0f, 0, UINT16_MAX);
s.current[j] = constrain_float(telemdata.current * 100.0f, 0, UINT16_MAX);
s.totalcurrent[j] = constrain_float(telemdata.consumption_mah, 0, UINT16_MAX);
float rpmf;
if (get_rpm(esc_id, rpmf)) {
s.rpm[j] = constrain_float(rpmf, 0, UINT16_MAX);
}
s.count[j] = telemdata.count;
}
// make sure a msg hasn't been extended
static_assert(MAVLINK_MSG_ID_ESC_TELEMETRY_1_TO_4_LEN == MAVLINK_MSG_ID_ESC_TELEMETRY_5_TO_8_LEN &&
MAVLINK_MSG_ID_ESC_TELEMETRY_1_TO_4_LEN == MAVLINK_MSG_ID_ESC_TELEMETRY_9_TO_12_LEN &&
MAVLINK_MSG_ID_ESC_TELEMETRY_1_TO_4_LEN == MAVLINK_MSG_ID_ESC_TELEMETRY_13_TO_16_LEN &&
MAVLINK_MSG_ID_ESC_TELEMETRY_1_TO_4_LEN == MAVLINK_MSG_ID_ESC_TELEMETRY_17_TO_20_LEN &&
MAVLINK_MSG_ID_ESC_TELEMETRY_1_TO_4_LEN == MAVLINK_MSG_ID_ESC_TELEMETRY_21_TO_24_LEN &&
MAVLINK_MSG_ID_ESC_TELEMETRY_1_TO_4_LEN == MAVLINK_MSG_ID_ESC_TELEMETRY_21_TO_24_LEN &&
MAVLINK_MSG_ID_ESC_TELEMETRY_1_TO_4_LEN == MAVLINK_MSG_ID_ESC_TELEMETRY_25_TO_28_LEN &&
MAVLINK_MSG_ID_ESC_TELEMETRY_1_TO_4_LEN == MAVLINK_MSG_ID_ESC_TELEMETRY_29_TO_32_LEN,
"telem messages not compatible");
const mavlink_channel_t chan = (mavlink_channel_t)mav_chan;
// send messages
switch (i) {
case 0:
mavlink_msg_esc_telemetry_1_to_4_send_struct(chan, &s);
break;
case 1:
mavlink_msg_esc_telemetry_5_to_8_send_struct(chan, (const mavlink_esc_telemetry_5_to_8_t *)&s);
break;
case 2:
mavlink_msg_esc_telemetry_9_to_12_send_struct(chan, (const mavlink_esc_telemetry_9_to_12_t *)&s);
break;
case 3:
mavlink_msg_esc_telemetry_13_to_16_send_struct(chan, (const mavlink_esc_telemetry_13_to_16_t *)&s);
break;
#if ESC_TELEM_MAX_ESCS > 16
case 4:
mavlink_msg_esc_telemetry_17_to_20_send_struct(chan, (const mavlink_esc_telemetry_17_to_20_t *)&s);
break;
case 5:
mavlink_msg_esc_telemetry_21_to_24_send_struct(chan, (const mavlink_esc_telemetry_21_to_24_t *)&s);
break;
case 6:
mavlink_msg_esc_telemetry_25_to_28_send_struct(chan, (const mavlink_esc_telemetry_25_to_28_t *)&s);
break;
case 7:
mavlink_msg_esc_telemetry_29_to_32_send_struct(chan, (const mavlink_esc_telemetry_29_to_32_t *)&s);
break;
#endif
}
}
// we checked for all sends without running out of buffer space,
// start at zero next time
next_idx = 0;
#endif // HAL_GCS_ENABLED
}
// record an update to the telemetry data together with timestamp
// this should be called by backends when new telemetry values are available
void AP_ESC_Telem::update_telem_data(const uint8_t esc_index, const AP_ESC_Telem_Backend::TelemetryData& new_data, const uint16_t data_mask)
{
// rpm and telemetry data are not protected by a semaphore even though updated from different threads
// all data is per-ESC and only written from the update thread and read by the user thread
// each element is a primitive type and the timestamp is only updated at the end, thus a caller
// can only get slightly more up-to-date information that perhaps they were expecting or might
// read data that has just gone stale - both of these are safe and avoid the overhead of locking
if (esc_index >= ESC_TELEM_MAX_ESCS || data_mask == 0) {
return;
}
_have_data = true;
volatile AP_ESC_Telem_Backend::TelemetryData &telemdata = _telem_data[esc_index];
#if AP_TEMPERATURE_SENSOR_ENABLED
// always allow external data. Block "internal" if external has ever its ever been set externally then ignore normal "internal" updates
const bool has_temperature = (data_mask & AP_ESC_Telem_Backend::TelemetryType::TEMPERATURE_EXTERNAL) ||
((data_mask & AP_ESC_Telem_Backend::TelemetryType::TEMPERATURE) && !(telemdata.types & AP_ESC_Telem_Backend::TelemetryType::TEMPERATURE_EXTERNAL));
const bool has_motor_temperature = (data_mask & AP_ESC_Telem_Backend::TelemetryType::MOTOR_TEMPERATURE_EXTERNAL) ||
((data_mask & AP_ESC_Telem_Backend::TelemetryType::MOTOR_TEMPERATURE) && !(telemdata.types & AP_ESC_Telem_Backend::TelemetryType::MOTOR_TEMPERATURE_EXTERNAL));
#else
const bool has_temperature = (data_mask & AP_ESC_Telem_Backend::TelemetryType::TEMPERATURE);
const bool has_motor_temperature = (data_mask & AP_ESC_Telem_Backend::TelemetryType::MOTOR_TEMPERATURE);
#endif
if (has_temperature) {
telemdata.temperature_cdeg = new_data.temperature_cdeg;
}
if (has_motor_temperature) {
telemdata.motor_temp_cdeg = new_data.motor_temp_cdeg;
}
if (data_mask & AP_ESC_Telem_Backend::TelemetryType::VOLTAGE) {
telemdata.voltage = new_data.voltage;
}
if (data_mask & AP_ESC_Telem_Backend::TelemetryType::CURRENT) {
telemdata.current = new_data.current;
}
if (data_mask & AP_ESC_Telem_Backend::TelemetryType::CONSUMPTION) {
telemdata.consumption_mah = new_data.consumption_mah;
}
if (data_mask & AP_ESC_Telem_Backend::TelemetryType::USAGE) {
telemdata.usage_s = new_data.usage_s;
}
#if AP_EXTENDED_ESC_TELEM_ENABLED
if (data_mask & AP_ESC_Telem_Backend::TelemetryType::INPUT_DUTY) {
_telem_data[esc_index].input_duty = new_data.input_duty;
}
if (data_mask & AP_ESC_Telem_Backend::TelemetryType::OUTPUT_DUTY) {
_telem_data[esc_index].output_duty = new_data.output_duty;
}
if (data_mask & AP_ESC_Telem_Backend::TelemetryType::FLAGS) {
_telem_data[esc_index].flags = new_data.flags;
}
if (data_mask & AP_ESC_Telem_Backend::TelemetryType::POWER_PERCENTAGE) {
_telem_data[esc_index].power_percentage = new_data.power_percentage;
}
#endif //AP_EXTENDED_ESC_TELEM_ENABLED
#if AP_EXTENDED_DSHOT_TELEM_V2_ENABLED
if (data_mask & AP_ESC_Telem_Backend::TelemetryType::EDT2_STATUS) {
telemdata.edt2_status = merge_edt2_status(telemdata.edt2_status, new_data.edt2_status);
}
if (data_mask & AP_ESC_Telem_Backend::TelemetryType::EDT2_STRESS) {
telemdata.edt2_stress = merge_edt2_stress(telemdata.edt2_stress, new_data.edt2_stress);
}
#endif
telemdata.count++;
telemdata.types |= data_mask;
telemdata.last_update_ms = AP_HAL::millis();
}
// record an update to the RPM together with timestamp, this allows the notch values to be slewed
// this should be called by backends when new telemetry values are available
void AP_ESC_Telem::update_rpm(const uint8_t esc_index, const float new_rpm, const float error_rate)
{
if (esc_index >= ESC_TELEM_MAX_ESCS) {
return;
}
_have_data = true;
const uint32_t now = MAX(1U ,AP_HAL::micros()); // don't allow a value of 0 in, as we use this as a flag in places
volatile AP_ESC_Telem_Backend::RpmData& rpmdata = _rpm_data[esc_index];
const auto last_update_us = rpmdata.last_update_us;
rpmdata.prev_rpm = rpmdata.rpm;
rpmdata.rpm = new_rpm;
rpmdata.update_rate_hz = 1.0e6f / constrain_uint32((now - last_update_us), 100, 1000000U*10U); // limit the update rate 0.1Hz to 10KHz
rpmdata.last_update_us = now;
rpmdata.error_rate = error_rate;
rpmdata.data_valid = true;
#ifdef ESC_TELEM_DEBUG
hal.console->printf("RPM: rate=%.1fhz, rpm=%f)\n", rpmdata.update_rate_hz, new_rpm);
#endif
}
#if AP_EXTENDED_DSHOT_TELEM_V2_ENABLED
// The following is based on https://github.com/bird-sanctuary/extended-dshot-telemetry.
// For the following part we explain the bits of Extended DShot Telemetry v2 status telemetry:
// - bits 0-3: the "stress level"
// - bit 5: the "error" bit (e.g. the stall event in Bluejay)
// - bit 6: the "warning" bit (e.g. the desync event in Bluejay)
// - bit 7: the "alert" bit (e.g. the demag event in Bluejay)
// Since logger can read out telemetry values less frequently than they are updated,
// it makes sense to aggregate these status bits, and to collect the maximum observed stress level.
// To reduce the logging rate of the EDT2 messages, we will try to log them only once a new frame comes.
// To track this, we are going to (ab)use bit 15 of the field: 1 means there is something to write.
// EDTv2 also features separate "stress" messages.
// These come more frequently, and are scaled differently (the allowed range is from 0 to 255),
// so we have to log them separately.
constexpr uint16_t EDT2_TELEM_UPDATED = 0x8000U;
constexpr uint16_t EDT2_STRESS_0F_MASK = 0xfU;
constexpr uint16_t EDT2_STRESS_FF_MASK = 0xffU;
constexpr uint16_t EDT2_ERROR_MASK = 0x20U;
constexpr uint16_t EDT2_WARNING_MASK = 0x40U;
constexpr uint16_t EDT2_ALERT_MASK = 0x80U;
constexpr uint16_t EDT2_ALL_BITS = EDT2_ERROR_MASK | EDT2_WARNING_MASK | EDT2_ALERT_MASK;
#define EDT2_HAS_NEW_DATA(status) bool((status) & EDT2_TELEM_UPDATED)
#define EDT2_STRESS_FROM_STATUS(status) uint8_t((status) & EDT2_STRESS_0F_MASK)
#define EDT2_ERROR_BIT_FROM_STATUS(status) bool((status) & EDT2_ERROR_MASK)
#define EDT2_WARNING_BIT_FROM_STATUS(status) bool((status) & EDT2_WARNING_MASK)
#define EDT2_ALERT_BIT_FROM_STATUS(status) bool((status) & EDT2_ALERT_MASK)
#define EDT2_STRESS_FROM_STRESS(stress) uint8_t((stress) & EDT2_STRESS_FF_MASK)
uint16_t AP_ESC_Telem::merge_edt2_status(uint16_t old_status, uint16_t new_status)
{
if (EDT2_HAS_NEW_DATA(old_status)) {
new_status = uint16_t(
(old_status & ~EDT2_STRESS_0F_MASK) | // old status except for the stress is preserved
(new_status & EDT2_ALL_BITS) | // all new status bits are included
MAX(old_status & EDT2_STRESS_0F_MASK, new_status & EDT2_STRESS_0F_MASK) // the stress is maxed out
);
}
return EDT2_TELEM_UPDATED | new_status;
}
uint16_t AP_ESC_Telem::merge_edt2_stress(uint16_t old_stress, uint16_t new_stress)
{
if (EDT2_HAS_NEW_DATA(old_stress)) {
new_stress = uint16_t(
MAX(old_stress & EDT2_STRESS_FF_MASK, new_stress & EDT2_STRESS_FF_MASK) // the stress is maxed out
);
}
return EDT2_TELEM_UPDATED | new_stress;
}
#endif // AP_EXTENDED_DSHOT_TELEM_V2_ENABLED
void AP_ESC_Telem::update()
{
#if HAL_LOGGING_ENABLED
AP_Logger *logger = AP_Logger::get_singleton();
const uint64_t now_us64 = AP_HAL::micros64();
for (uint8_t i = 0; i < ESC_TELEM_MAX_ESCS; i++) {
const volatile AP_ESC_Telem_Backend::RpmData &rpmdata = _rpm_data[i];
volatile AP_ESC_Telem_Backend::TelemetryData &telemdata = _telem_data[i];
// Push received telemetry data into the logging system
if (logger && logger->logging_enabled()) {
if (telemdata.last_update_ms != _last_telem_log_ms[i]
|| rpmdata.last_update_us != _last_rpm_log_us[i]) {
// Update last log timestamps
_last_telem_log_ms[i] = telemdata.last_update_ms;
_last_rpm_log_us[i] = rpmdata.last_update_us;
float rpm = AP::logger().quiet_nanf();
get_rpm(i, rpm);
float raw_rpm = AP::logger().quiet_nanf();
get_raw_rpm(i, raw_rpm);
// Write ESC status messages
// id starts from 0
// rpm, raw_rpm is eRPM (in RPM units)
// voltage is in Volt
// current is in Ampere
// esc_temp is in centi-degrees Celsius
// current_tot is in milli-Ampere hours
// motor_temp is in centi-degrees Celsius
// error_rate is in percentage
const struct log_Esc pkt{
LOG_PACKET_HEADER_INIT(uint8_t(LOG_ESC_MSG)),
time_us : now_us64,
instance : i,
rpm : rpm,
raw_rpm : raw_rpm,
voltage : telemdata.voltage,
current : telemdata.current,
esc_temp : telemdata.temperature_cdeg,
current_tot : telemdata.consumption_mah,
motor_temp : telemdata.motor_temp_cdeg,
error_rate : rpmdata.error_rate
};
AP::logger().WriteBlock(&pkt, sizeof(pkt));
#if AP_EXTENDED_ESC_TELEM_ENABLED
// Write ESC extended status messages
// id: starts from 0
// input duty: duty cycle input to the ESC in percent
// output duty: duty cycle output to the motor in percent
// status flags: manufacurer-specific status flags
const bool has_ext_data = telemdata.types &
(AP_ESC_Telem_Backend::TelemetryType::INPUT_DUTY |
AP_ESC_Telem_Backend::TelemetryType::OUTPUT_DUTY |
AP_ESC_Telem_Backend::TelemetryType::FLAGS |
AP_ESC_Telem_Backend::TelemetryType::POWER_PERCENTAGE);
if (has_ext_data) {
// @LoggerMessage: ESCX
// @Description: ESC extended telemetry data
// @Field: TimeUS: Time since system startup
// @Field: Instance: starts from 0
// @Field: inpct: input duty cycle in percent
// @Field: outpct: output duty cycle in percent
// @Field: flags: manufacturer-specific status flags
// @Field: Pwr: Power percentage
AP::logger().WriteStreaming("ESCX",
"TimeUS,Instance,inpct,outpct,flags,Pwr",
"s" "#" "%" "%" "-" "%",
"F" "-" "-" "-" "-" "-",
"Q" "B" "B" "B" "I" "B",
AP_HAL::micros64(),
i,
telemdata.input_duty,
telemdata.output_duty,
telemdata.flags,
telemdata.power_percentage);
}
#endif //AP_EXTENDED_ESC_TELEM_ENABLED
}
#if AP_EXTENDED_DSHOT_TELEM_V2_ENABLED
// Write an EDTv2 message, if there is any update
uint16_t edt2_status = telemdata.edt2_status;
uint16_t edt2_stress = telemdata.edt2_stress;
if (EDT2_HAS_NEW_DATA(edt2_status | edt2_stress)) {
// Could probably be faster/smaller with bitmasking, but not sure
uint8_t status = 0;
if (EDT2_HAS_NEW_DATA(edt2_stress)) {
status |= uint8_t(log_Edt2_Status::HAS_STRESS_DATA);
}
if (EDT2_HAS_NEW_DATA(edt2_status)) {
status |= uint8_t(log_Edt2_Status::HAS_STATUS_DATA);
}
if (EDT2_ALERT_BIT_FROM_STATUS(edt2_status)) {
status |= uint8_t(log_Edt2_Status::ALERT_BIT);
}
if (EDT2_WARNING_BIT_FROM_STATUS(edt2_status)) {
status |= uint8_t(log_Edt2_Status::WARNING_BIT);
}
if (EDT2_ERROR_BIT_FROM_STATUS(edt2_status)) {
status |= uint8_t(log_Edt2_Status::ERROR_BIT);
}
// An EDT2 status message is:
// id: starts from 0
// stress: the current stress which comes from edt2_stress
// max_stress: the maximum stress which comes from edt2_status
// status: the status bits which come from both
const struct log_Edt2 pkt_edt2{
LOG_PACKET_HEADER_INIT(uint8_t(LOG_EDT2_MSG)),
time_us : now_us64,
instance : i,
stress : EDT2_STRESS_FROM_STRESS(edt2_stress),
max_stress : EDT2_STRESS_FROM_STATUS(edt2_status),
status : status,
};
if (AP::logger().WriteBlock_first_succeed(&pkt_edt2, sizeof(pkt_edt2))) {
// Only clean the telem_updated bits if the write succeeded.
// This is important because, if rate limiting is enabled,
// the log-on-change behavior may lose a lot of entries
telemdata.edt2_status &= ~EDT2_TELEM_UPDATED;
telemdata.edt2_stress &= ~EDT2_TELEM_UPDATED;
}
}
#endif // AP_EXTENDED_DSHOT_TELEM_V2_ENABLED
}
}
#endif // HAL_LOGGING_ENABLED
const uint32_t now_us = AP_HAL::micros();
for (uint8_t i = 0; i < ESC_TELEM_MAX_ESCS; i++) {
// Invalidate RPM data if not received for too long
if ((now_us - _rpm_data[i].last_update_us) > ESC_RPM_DATA_TIMEOUT_US) {
_rpm_data[i].data_valid = false;
}
}
}
bool AP_ESC_Telem::rpm_data_within_timeout(const volatile AP_ESC_Telem_Backend::RpmData &instance, const uint32_t now_us, const uint32_t timeout_us)
{
// easy case, has the time window been crossed so it's invalid
if ((now_us - instance.last_update_us) > timeout_us) {
return false;
}
// we never got a valid data, to it's invalid
if (instance.last_update_us == 0) {
return false;
}
// check if things generally expired on us, this is done to handle time wrapping
return instance.data_valid;
}
bool AP_ESC_Telem::was_rpm_data_ever_reported(const volatile AP_ESC_Telem_Backend::RpmData &instance)
{
return instance.last_update_us > 0;
}
#if AP_SCRIPTING_ENABLED
/*
set RPM scale factor from script
*/
void AP_ESC_Telem::set_rpm_scale(const uint8_t esc_index, const float scale_factor)
{
if (esc_index < ESC_TELEM_MAX_ESCS) {
rpm_scale_factor[esc_index] = scale_factor;
rpm_scale_mask |= (1U<<esc_index);
}
}
#endif
AP_ESC_Telem *AP_ESC_Telem::_singleton = nullptr;
/*
* Get the AP_ESC_Telem singleton
*/
AP_ESC_Telem *AP_ESC_Telem::get_singleton()
{
return AP_ESC_Telem::_singleton;
}
namespace AP {
AP_ESC_Telem &esc_telem()
{
return *AP_ESC_Telem::get_singleton();
}
};
#endif // HAL_WITH_ESC_TELEM