-
Notifications
You must be signed in to change notification settings - Fork 181
/
metrics.py
417 lines (356 loc) · 23.6 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
import argparse
import os
import json
import open3d as o3d
import torch
from pytorch3d.io import load_objs_as_meshes
from gaussian_splatting.utils.loss_utils import ssim
from gaussian_splatting.utils.image_utils import psnr
from gaussian_splatting.lpipsPyTorch import lpips
from sugar_scene.gs_model import GaussianSplattingWrapper
from sugar_scene.sugar_model import SuGaR
from sugar_utils.spherical_harmonics import SH2RGB
from sugar_utils.general_utils import str2bool
from rich.console import Console
CONSOLE = Console(width=120)
os.makedirs('./lpipsPyTorch/weights/', exist_ok=True)
torch.hub.set_dir('./lpipsPyTorch/weights/')
n_skip_images_for_eval_split = 8
if __name__ == "__main__":
# Parser
parser = argparse.ArgumentParser(description='Script to extract a mesh from a coarse SuGaR scene.')
# Config file for scenes to evaluate
parser.add_argument('--scene_config', type=str,
help='(Required) Path to the JSON file containing the scenes to evaluate. '
'The JSON file should be a dictionary with the following structure: '
'{source_images_dir_path: vanilla_gaussian_splatting_checkpoint_path}')
# Coarse model parameters
parser.add_argument('-i', '--iteration_to_load', type=int, default=7000,
help='iteration to load.')
parser.add_argument('-e', '--estimation_factor', type=float, default=0.2,
help='Estimation factor to load for coarse model.')
parser.add_argument('-r', '--regularization_type', type=str,
help='(Required) Type of regularization to evaluate for coarse SuGaR. Can be "sdf" or "density".')
# Mesh extraction parameters
parser.add_argument('-l', '--surface_level', type=float, default=0.3,
help='Surface level used for mesh extraction in SuGaR models to evaluate. Default is 0.3')
parser.add_argument('-v', '--n_vertices_in_mesh', type=int, default=1_000_000,
help='Number of vertices in SuGaR meshes to evaluate. Default is 1_000_000')
# Refined model parameters
parser.add_argument('-g', '--gaussians_per_triangle', type=int, default=1,
help='Number of gaussians per triangle used in the refined SuGaR models to evaluate. Default is 1')
parser.add_argument('-f', '--refinement_iterations', type=int, default=15_000,
help='Number of refinement iterations used in the refined SuGaR models to evaluate. Default is 15_000')
# Device
parser.add_argument('--gpu', type=int, default=0,
help='Index of GPU to use.')
# (Optional) Default configurations
parser.add_argument('--low_poly', type=str2bool, default=False,
help='Evaluating standard config for a low poly mesh, with 200k vertices and 6 Gaussians per triangle.')
parser.add_argument('--high_poly', type=str2bool, default=False,
help='Evaluating standard config for a high poly mesh, with 1M vertices and 1 Gaussians per triangle.')
parser.add_argument('--refinement_time', type=str, default=None,
help="Default configs for time to spend on refinement. Can be 'short', 'medium' or 'long'.")
# (Optional) Additional evaluation parameters
parser.add_argument('--evaluate_vanilla', type=str2bool, default=False,
help='If True, will also evaluate vanilla 3DGS, in addition to SuGaR.')
parser.add_argument('--use_uv_texture', type=str2bool, default=False,
help='If True, will use the extracted UV texture for the mesh instead of Gaussian Splatting rendering.')
parser.add_argument('--use_diffuse_color_only', type=str2bool, default=False,
help='If True, will use only the diffuse component in Gaussian Splatting rendering.')
parser.add_argument('--use_poisson_center', type=str2bool, default=False,
help='If True, will evaluate Poisson center as the extraction method.')
parser.add_argument('--use_marching_cubes', type=str2bool, default=False,
help='If True, will evaluate Marching Cubes as the extraction method.')
args = parser.parse_args()
# Mesh resolution
if args.low_poly:
args.n_vertices_in_mesh = 200_000
args.gaussians_per_triangle = 6
print('Evaluating low poly config.')
if args.high_poly:
args.n_vertices_in_mesh = 1_000_000
args.gaussians_per_triangle = 1
print('Evaluating high poly config.')
# Refinement time
if args.refinement_time == 'short':
args.refinement_iterations = 2_000
print('Evaluating short refinement time.')
if args.refinement_time == 'medium':
args.refinement_iterations = 7_000
print('Evaluating medium refinement time.')
if args.refinement_time == 'long':
args.refinement_iterations = 15_000
print('Evaluating long refinement time.')
# --- Scenes dict ---
with open(args.scene_config, 'r') as f:
gs_checkpoints_eval = json.load(f)
# --- Coarse model parameters ---
coarse_iteration_to_load = args.iteration_to_load
coarse_estimation_factor = args.estimation_factor
estim_method = args.regularization_type
coarse_normal_factor = 0.2
# --- Mesh extraction parameters ---
surface_levels = [args.surface_level]
decimation_targets = [args.n_vertices_in_mesh]
# --- Refined model parameters ---
surface_mesh_normal_consistency_factor = 0.1
n_gaussians_per_surface_triangle_map = {args.n_vertices_in_mesh: args.gaussians_per_triangle,}
refinement_iterations_list = [args.refinement_iterations]
# --- Evaluation parameters ---
evaluate_vanilla = args.evaluate_vanilla
use_uv_texture = args.use_uv_texture
use_diffuse_color_only = args.use_diffuse_color_only
use_poisson_center = args.use_poisson_center
use_marching_cubes = args.use_marching_cubes
CONSOLE.print('==================================================')
CONSOLE.print("Starting evaluation with the following parameters:")
CONSOLE.print(f"Coarse iteration to load: {coarse_iteration_to_load}")
CONSOLE.print(f"Coarse estimation factor: {coarse_estimation_factor}")
CONSOLE.print(f"Coarse normal factor: {coarse_normal_factor}")
CONSOLE.print(f"Estimation method: {estim_method}")
CONSOLE.print(f"Surface levels: {surface_levels}")
CONSOLE.print(f"Decimation targets: {decimation_targets}")
CONSOLE.print(f"Surface mesh normal consistency factor: {surface_mesh_normal_consistency_factor}")
CONSOLE.print(f"Number of Gaussians per surface triangle: {n_gaussians_per_surface_triangle_map}")
CONSOLE.print(f"Refinement iterations: {refinement_iterations_list}")
CONSOLE.print(f"GS checkpoints for evaluation: {gs_checkpoints_eval}")
CONSOLE.print(f"Evaluate vanilla: {evaluate_vanilla}")
CONSOLE.print(f"Use UV texture: {use_uv_texture}")
CONSOLE.print(f"Use diffuse color only: {use_diffuse_color_only}")
CONSOLE.print(f"Use Poisson center: {use_poisson_center}")
CONSOLE.print(f"Use Marching Cubes: {use_marching_cubes}")
CONSOLE.print('==================================================')
# Set the GPU
torch.cuda.set_device(args.gpu)
# ==========================
result_file_dir = './output/metrics/'
os.makedirs(result_file_dir, exist_ok=True)
results = {}
for source_path in gs_checkpoints_eval.keys():
scene_name = source_path.split('/')[-1]
CONSOLE.print(f"\n===== Processing scene {scene_name}... =====")
scene_results = {}
# Loading vanilla 3DGS models
gs_checkpoint_path = gs_checkpoints_eval[source_path]
CONSOLE.print("Source path:", source_path)
CONSOLE.print("Gaussian splatting checkpoint path:", gs_checkpoint_path)
CONSOLE.print(f"\nLoading Vanilla 3DGS model config {gs_checkpoint_path}...")
nerfmodel_30k = GaussianSplattingWrapper(
source_path=source_path,
output_path=gs_checkpoint_path,
iteration_to_load=30_000,
load_gt_images=True,
eval_split=True,
eval_split_interval=n_skip_images_for_eval_split,
)
nerfmodel_7k = GaussianSplattingWrapper(
source_path=source_path,
output_path=gs_checkpoint_path,
iteration_to_load=7000,
load_gt_images=False,
eval_split=True,
eval_split_interval=n_skip_images_for_eval_split,
)
if use_diffuse_color_only:
sh_deg_to_use = 0
else:
sh_deg_to_use = nerfmodel_30k.gaussians.active_sh_degree
CONSOLE.print("Vanilla 3DGS Loaded.")
CONSOLE.print("Number of test cameras:", len(nerfmodel_30k.test_cameras))
CONSOLE.print("Using SH degree:", sh_deg_to_use)
compute_lpips = True
cam_indices = [cam_idx for cam_idx in range(len(nerfmodel_30k.test_cameras))]
# Evaluating Vanilla 3DGS
if evaluate_vanilla:
CONSOLE.print("\n--- Starting Evaluation of Vanilla 3DGS... ---")
gs_7k_ssims = []
gs_7k_psnrs = []
gs_7k_lpipss = []
gs_30k_ssims = []
gs_30k_psnrs = []
gs_30k_lpipss = []
with torch.no_grad():
for cam_idx in cam_indices:
# GT image
gt_img = nerfmodel_30k.get_test_gt_image(cam_idx).permute(2, 0, 1).unsqueeze(0)
# Vanilla 3DGS image (30K)
gs_30k_img = nerfmodel_30k.render_image(
nerf_cameras=nerfmodel_30k.test_cameras,
camera_indices=cam_idx).clamp(min=0, max=1).permute(2, 0, 1).unsqueeze(0)
# Vanilla 3DGS image (7K)
gs_7k_img = nerfmodel_7k.render_image(
nerf_cameras=nerfmodel_30k.test_cameras,
camera_indices=cam_idx).clamp(min=0, max=1).permute(2, 0, 1).unsqueeze(0)
gs_30k_ssims.append(ssim(gs_30k_img, gt_img))
gs_30k_psnrs.append(psnr(gs_30k_img, gt_img))
gs_30k_lpipss.append(lpips(gs_30k_img, gt_img, net_type='vgg'))
gs_7k_ssims.append(ssim(gs_7k_img, gt_img))
gs_7k_psnrs.append(psnr(gs_7k_img, gt_img))
gs_7k_lpipss.append(lpips(gs_7k_img, gt_img, net_type='vgg'))
CONSOLE.print("Evaluation of Vanilla 3DGS finished.")
scene_results['3dgs_7k'] = {}
scene_results['3dgs_7k']['ssim'] = torch.tensor(gs_7k_ssims).mean().item()
scene_results['3dgs_7k']['psnr'] = torch.tensor(gs_7k_psnrs).mean().item()
scene_results['3dgs_7k']['lpips'] = torch.tensor(gs_7k_lpipss).mean().item()
scene_results['3dgs_30k'] = {}
scene_results['3dgs_30k']['ssim'] = torch.tensor(gs_30k_ssims).mean().item()
scene_results['3dgs_30k']['psnr'] = torch.tensor(gs_30k_psnrs).mean().item()
scene_results['3dgs_30k']['lpips'] = torch.tensor(gs_30k_lpipss).mean().item()
CONSOLE.print(f"\nVanilla 3DGS results (7K iterations):")
CONSOLE.print("SSIM:", torch.tensor(gs_7k_ssims).mean())
CONSOLE.print("PSNR:", torch.tensor(gs_7k_psnrs).mean())
CONSOLE.print("LPIPS:", torch.tensor(gs_7k_lpipss).mean())
CONSOLE.print(f"\bVanilla 3DGS results (30K iterations):")
CONSOLE.print("SSIM:", torch.tensor(gs_30k_ssims).mean())
CONSOLE.print("PSNR:", torch.tensor(gs_30k_psnrs).mean())
CONSOLE.print("LPIPS:", torch.tensor(gs_30k_lpipss).mean())
# Evaluating SuGaR models
with torch.no_grad():
CONSOLE.print("\n--- Starting Evaluation of SuGaR... ---")
for surface_level in surface_levels:
for decimation_target in decimation_targets:
for refinement_iterations in refinement_iterations_list:
n_gaussians_per_surface_triangle = n_gaussians_per_surface_triangle_map[decimation_target]
if use_uv_texture:
CONSOLE.print("Using UV texture for rendering.")
coarse_estimation_factor_str = str(coarse_estimation_factor).replace('.', '')
surface_level_str = str(surface_level).replace('.', '')
textured_mesh_path = os.path.join('./output/refined_mesh/', scene_name,
f'sugarfine_3Dgs{coarse_iteration_to_load}_{estim_method}estim{coarse_estimation_factor_str}_sdfnorm02_level{surface_level_str}_decim{decimation_target}_normalconsistency01_gaussperface{n_gaussians_per_surface_triangle}.obj')
CONSOLE.print(f'Loading textured mesh: {textured_mesh_path}')
textured_mesh = load_objs_as_meshes([textured_mesh_path]).to(nerfmodel_30k.device)
CONSOLE.print(f"Loaded textured mesh with {len(textured_mesh.verts_list()[0])} vertices and {len(textured_mesh.faces_list()[0])} faces.")
faces_per_pixel = 1
max_faces_per_bin = 50_000
from pytorch3d.renderer import (
AmbientLights,
RasterizationSettings,
MeshRenderer,
MeshRasterizer,
SoftPhongShader,
)
from pytorch3d.renderer.blending import BlendParams
mesh_raster_settings = RasterizationSettings(
image_size=(nerfmodel_30k.image_height, nerfmodel_30k.image_width),
blur_radius=0.0,
faces_per_pixel=faces_per_pixel,
# max_faces_per_bin=max_faces_per_bin
)
renderer = MeshRenderer(
rasterizer=MeshRasterizer(
cameras=nerfmodel_30k.test_cameras.p3d_cameras[0],
raster_settings=mesh_raster_settings,
),
shader=SoftPhongShader(
device=nerfmodel_30k.device,
cameras=nerfmodel_30k.test_cameras.p3d_cameras[0],
lights=AmbientLights(device=nerfmodel_30k.device),
blend_params=BlendParams(background_color=(0.0, 0.0, 0.0)),
)
)
else:
CONSOLE.print("Using surface Gaussian Splatting for rendering.")
sugar_checkpoint_path = f'sugarcoarse_3Dgs{coarse_iteration_to_load}_{estim_method}estimXX_sdfnormYY/'
sugar_checkpoint_path = sugar_checkpoint_path.replace(
'XX', str(coarse_estimation_factor).replace('.', '')
).replace(
'YY', str(coarse_normal_factor).replace('.', '')
)
# Loading mesh
CONSOLE.print(f"\nProcessing Surface level: {surface_level}, Decimation target: {decimation_target}, Refinement iterations: {refinement_iterations}...")
if use_marching_cubes:
CONSOLE.print("Using Marching Cubes for mesh extraction.")
sugar_mesh_path = 'sugarmesh_' + sugar_checkpoint_path.split('/')[-2].replace('sugarcoarse_', '') + 'marchingcubes_levelZZ_decimAA.ply'
elif use_poisson_center:
CONSOLE.print("Using Poisson Center for mesh extraction.")
sugar_mesh_path = 'sugarmesh_' + sugar_checkpoint_path.split('/')[-2].replace('sugarcoarse_', '') + '_poissoncenters_decimAA.ply'
else:
sugar_mesh_path = 'sugarmesh_' + sugar_checkpoint_path.split('/')[-2].replace('sugarcoarse_', '') + '_levelZZ_decimAA.ply'
sugar_mesh_path = sugar_mesh_path.replace(
'ZZ', str(surface_level).replace('.', '')
).replace(
'AA', str(decimation_target).replace('.', '')
)
mesh_save_dir = os.path.join('./output/coarse_mesh/', scene_name)
sugar_mesh_path = os.path.join(mesh_save_dir, sugar_mesh_path)
CONSOLE.print(f'Loading mesh to bind to: {sugar_mesh_path}')
o3d_mesh = o3d.io.read_triangle_mesh(sugar_mesh_path)
# Loading refined SuGaR model
mesh_name = sugar_mesh_path.split("/")[-1].split(".")[0]
refined_sugar_path = 'sugarfine_' + mesh_name.replace('sugarmesh_', '') + '_normalconsistencyXX_gaussperfaceYY/'
refined_sugar_path = os.path.join(os.path.join('./output/refined/', scene_name), refined_sugar_path)
refined_sugar_path = refined_sugar_path.replace(
'XX', str(surface_mesh_normal_consistency_factor).replace('.', '')
).replace(
'YY', str(n_gaussians_per_surface_triangle).replace('.', '')
)
refined_sugar_path = os.path.join(refined_sugar_path, f'{refinement_iterations}.pt')
CONSOLE.print(f"Loading SuGaR model config {refined_sugar_path}...")
checkpoint = torch.load(refined_sugar_path, map_location=nerfmodel_30k.device)
refined_sugar = SuGaR(
nerfmodel=nerfmodel_30k,
points=checkpoint['state_dict']['_points'],
colors=SH2RGB(checkpoint['state_dict']['_sh_coordinates_dc'][:, 0, :]),
initialize=False,
sh_levels=nerfmodel_30k.gaussians.active_sh_degree+1,
keep_track_of_knn=False,
knn_to_track=0,
beta_mode='average',
surface_mesh_to_bind=o3d_mesh,
n_gaussians_per_surface_triangle=n_gaussians_per_surface_triangle,
)
refined_sugar.load_state_dict(checkpoint['state_dict'])
refined_sugar.eval()
# Evaluating SuGaR
with torch.no_grad():
sugar_ssims = []
sugar_psnrs = []
sugar_lpipss = []
for cam_idx in cam_indices:
# GT image
gt_img = nerfmodel_30k.get_test_gt_image(cam_idx).permute(2, 0, 1).unsqueeze(0)
# SUGAR image
if use_uv_texture:
p3d_cameras = nerfmodel_30k.test_cameras.p3d_cameras[cam_idx]
sugar_img = renderer(textured_mesh, cameras=p3d_cameras)[0, ..., :3].clamp(min=0, max=1).permute(2, 0, 1).unsqueeze(0).contiguous()
else:
sugar_img = refined_sugar.render_image_gaussian_rasterizer(
nerf_cameras=nerfmodel_30k.test_cameras,
camera_indices=cam_idx,
verbose=False,
bg_color=None,
sh_deg=sh_deg_to_use,
compute_color_in_rasterizer=True,#compute_color_in_rasterizer,
).clamp(min=0, max=1).permute(2, 0, 1).unsqueeze(0)
sugar_ssims.append(ssim(sugar_img, gt_img))
sugar_psnrs.append(psnr(sugar_img, gt_img))
sugar_lpipss.append(lpips(sugar_img, gt_img, net_type='vgg'))
CONSOLE.print(f"Evaluation of SuGaR finished, with surface level {surface_level} and decimation target {decimation_target} and refinement iterations {refinement_iterations}.")
str_surface_level = str(surface_level).replace('.', '')
scene_results[f'sugar_{str_surface_level}_{decimation_target}_{refinement_iterations}'] = {}
scene_results[f'sugar_{str_surface_level}_{decimation_target}_{refinement_iterations}']['ssim'] = torch.tensor(sugar_ssims).mean().item()
scene_results[f'sugar_{str_surface_level}_{decimation_target}_{refinement_iterations}']['psnr'] = torch.tensor(sugar_psnrs).mean().item()
scene_results[f'sugar_{str_surface_level}_{decimation_target}_{refinement_iterations}']['lpips'] = torch.tensor(sugar_lpipss).mean().item()
CONSOLE.print(f"SuGaR results:")
CONSOLE.print("SSIM:", torch.tensor(sugar_ssims).mean())
CONSOLE.print("PSNR:", torch.tensor(sugar_psnrs).mean())
CONSOLE.print("LPIPS:", torch.tensor(sugar_lpipss).mean())
# Saves results to JSON file
results[scene_name] = scene_results
estim_factor_str = str(coarse_estimation_factor).replace('.', '')
normal_factor_str = str(coarse_normal_factor).replace('.', '')
if use_uv_texture:
result_file_name = f'results_{estim_method}{estim_factor_str}_normal{normal_factor_str}_uvtexture.json'
elif use_diffuse_color_only:
result_file_name = f'results_{estim_method}{estim_factor_str}_normal{normal_factor_str}_diffuseonly.json'
elif use_poisson_center:
result_file_name = f'results_{estim_method}{estim_factor_str}_normal{normal_factor_str}_poissoncenter.json'
elif use_marching_cubes:
result_file_name = f'results_{estim_method}{estim_factor_str}_normal{normal_factor_str}_marchingcubes.json'
else:
result_file_name = f'results_{estim_method}{estim_factor_str}_normal{normal_factor_str}.json'
result_file_name = os.path.join(result_file_dir, result_file_name)
CONSOLE.print(f"Saving results to {result_file_name}...")
with open(result_file_name, 'w') as f:
json.dump(results, f, indent=4)