This repository has been archived by the owner on Nov 17, 2023. It is now read-only.
forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreduced_costs.cc
565 lines (507 loc) · 22 KB
/
reduced_costs.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/glop/reduced_costs.h"
#include <random>
#ifdef OMP
#include <omp.h>
#endif
#include "ortools/lp_data/lp_utils.h"
namespace operations_research {
namespace glop {
ReducedCosts::ReducedCosts(const CompactSparseMatrix& matrix,
const DenseRow& objective,
const RowToColMapping& basis,
const VariablesInfo& variables_info,
const BasisFactorization& basis_factorization,
random_engine_t* random)
: matrix_(matrix),
objective_(objective),
basis_(basis),
variables_info_(variables_info),
basis_factorization_(basis_factorization),
random_(random),
parameters_(),
stats_(),
must_refactorize_basis_(false),
recompute_basic_objective_left_inverse_(true),
recompute_basic_objective_(true),
recompute_reduced_costs_(true),
are_reduced_costs_precise_(false),
are_reduced_costs_recomputed_(false),
basic_objective_(),
reduced_costs_(),
basic_objective_left_inverse_(),
dual_feasibility_tolerance_(),
is_dual_infeasible_(),
are_dual_infeasible_positions_maintained_(false) {}
bool ReducedCosts::NeedsBasisRefactorization() const {
return must_refactorize_basis_;
}
bool ReducedCosts::TestEnteringReducedCostPrecision(
ColIndex entering_col, const ScatteredColumn& direction,
Fractional* reduced_cost) {
SCOPED_TIME_STAT(&stats_);
if (recompute_basic_objective_) {
ComputeBasicObjective();
}
const Fractional old_reduced_cost = reduced_costs_[entering_col];
const Fractional precise_reduced_cost =
objective_[entering_col] + cost_perturbations_[entering_col] -
PreciseScalarProduct(basic_objective_, direction);
// Update the reduced cost of the entering variable with the precise version.
reduced_costs_[entering_col] = precise_reduced_cost;
*reduced_cost = precise_reduced_cost;
if (are_dual_infeasible_positions_maintained_) {
is_dual_infeasible_.Set(entering_col,
IsValidPrimalEnteringCandidate(entering_col));
// Check if the entering column is still a valid candidate.
if (!is_dual_infeasible_.IsSet(entering_col)) {
// If we don't have the reduced cost with maximum precision, we
// return false and the next ChooseEnteringColumn() will recompute them.
// If they are already precise, we will skip this one (since it is no
// longer a candidate).
if (!are_reduced_costs_precise_) {
MakeReducedCostsPrecise();
}
return false;
}
}
// At this point, we have an entering variable that will move the objective in
// the good direction. We check the precision of the reduced cost and edges
// norm, but even if they are imprecise, we finish this pivot and will
// recompute them during the next call to ChooseEnteringColumn().
// Estimate the accuracy of the reduced costs using the entering variable.
if (!recompute_reduced_costs_) {
const Fractional estimated_reduced_costs_accuracy =
old_reduced_cost - precise_reduced_cost;
const Fractional scale =
(std::abs(precise_reduced_cost) <= 1.0) ? 1.0 : precise_reduced_cost;
stats_.reduced_costs_accuracy.Add(estimated_reduced_costs_accuracy / scale);
if (std::abs(estimated_reduced_costs_accuracy) / scale >
parameters_.recompute_reduced_costs_threshold()) {
VLOG(1) << "Recomputing reduced costs, value = " << precise_reduced_cost
<< " error = "
<< std::abs(precise_reduced_cost - old_reduced_cost);
MakeReducedCostsPrecise();
}
}
return true;
}
Fractional ReducedCosts::ComputeMaximumDualResidual() const {
SCOPED_TIME_STAT(&stats_);
DCHECK(!recompute_reduced_costs_);
if (recompute_reduced_costs_) return 0.0;
// The current reduced costs of the slack columns are the opposite of the dual
// values. Note that they are updated by UpdateBeforeBasisPivot().
const RowIndex num_rows = matrix_.num_rows();
const ColIndex first_slack_col = matrix_.num_cols() - RowToColIndex(num_rows);
DenseRow dual_values(RowToColIndex(num_rows), 0.0);
for (RowIndex row(0); row < num_rows; ++row) {
const ColIndex row_as_col = RowToColIndex(row);
dual_values[row_as_col] = -reduced_costs_[first_slack_col + row_as_col];
}
Fractional dual_residual_error(0.0);
for (RowIndex row(0); row < num_rows; ++row) {
const ColIndex basic_col = basis_[row];
const Fractional residual =
objective_[basic_col] + cost_perturbations_[basic_col] -
matrix_.ColumnScalarProduct(basic_col, dual_values);
dual_residual_error = std::max(dual_residual_error, std::abs(residual));
}
return dual_residual_error;
}
Fractional ReducedCosts::ComputeMaximumDualInfeasibility() const {
SCOPED_TIME_STAT(&stats_);
DCHECK(!recompute_reduced_costs_);
if (recompute_reduced_costs_) return 0.0;
Fractional maximum_dual_infeasibility = 0.0;
const DenseBitRow& can_decrease = variables_info_.GetCanDecreaseBitRow();
const DenseBitRow& can_increase = variables_info_.GetCanIncreaseBitRow();
for (const ColIndex col : variables_info_.GetIsRelevantBitRow()) {
const Fractional rc = reduced_costs_[col];
if ((can_increase.IsSet(col) && rc < 0.0) ||
(can_decrease.IsSet(col) && rc > 0.0)) {
maximum_dual_infeasibility =
std::max(maximum_dual_infeasibility, std::abs(rc));
}
}
return maximum_dual_infeasibility;
}
Fractional ReducedCosts::ComputeSumOfDualInfeasibilities() const {
SCOPED_TIME_STAT(&stats_);
DCHECK(!recompute_reduced_costs_);
if (recompute_reduced_costs_) return 0.0;
Fractional dual_infeasibility_sum = 0.0;
const DenseBitRow& can_decrease = variables_info_.GetCanDecreaseBitRow();
const DenseBitRow& can_increase = variables_info_.GetCanIncreaseBitRow();
for (const ColIndex col : variables_info_.GetIsRelevantBitRow()) {
const Fractional rc = reduced_costs_[col];
if ((can_increase.IsSet(col) && rc < 0.0) ||
(can_decrease.IsSet(col) && rc > 0.0)) {
dual_infeasibility_sum += std::abs(std::abs(rc));
}
}
return dual_infeasibility_sum;
}
void ReducedCosts::UpdateBeforeBasisPivot(ColIndex entering_col,
RowIndex leaving_row,
const ScatteredColumn& direction,
UpdateRow* update_row) {
SCOPED_TIME_STAT(&stats_);
const ColIndex leaving_col = basis_[leaving_row];
DCHECK(!variables_info_.GetIsBasicBitRow().IsSet(entering_col));
DCHECK(variables_info_.GetIsBasicBitRow().IsSet(leaving_col));
if (are_dual_infeasible_positions_maintained_) {
is_dual_infeasible_.Clear(entering_col);
}
UpdateReducedCosts(entering_col, leaving_col, leaving_row,
direction[leaving_row], update_row);
if (are_dual_infeasible_positions_maintained_) {
UpdateEnteringCandidates(update_row->GetNonZeroPositions());
SetAndDebugCheckThatColumnIsDualFeasible(leaving_col);
}
// Note that it is important to update basic_objective_ AFTER calling
// UpdateReducedCosts().
UpdateBasicObjective(entering_col, leaving_row);
}
void ReducedCosts::SetAndDebugCheckThatColumnIsDualFeasible(ColIndex col) {
SCOPED_TIME_STAT(&stats_);
is_dual_infeasible_.Clear(col);
DCHECK(!IsValidPrimalEnteringCandidate(col));
}
void ReducedCosts::SetNonBasicVariableCostToZero(ColIndex col,
Fractional* current_cost) {
DCHECK_NE(variables_info_.GetStatusRow()[col], VariableStatus::BASIC);
DCHECK_EQ(current_cost, &objective_[col]);
reduced_costs_[col] -= objective_[col];
*current_cost = 0.0;
}
void ReducedCosts::SetParameters(const GlopParameters& parameters) {
parameters_ = parameters;
}
void ReducedCosts::ResetForNewObjective() {
SCOPED_TIME_STAT(&stats_);
recompute_basic_objective_ = true;
recompute_basic_objective_left_inverse_ = true;
recompute_reduced_costs_ = true;
are_reduced_costs_precise_ = false;
}
void ReducedCosts::UpdateDataOnBasisPermutation() {
SCOPED_TIME_STAT(&stats_);
recompute_basic_objective_ = true;
recompute_basic_objective_left_inverse_ = true;
}
void ReducedCosts::MakeReducedCostsPrecise() {
SCOPED_TIME_STAT(&stats_);
if (are_reduced_costs_precise_) return;
must_refactorize_basis_ = true;
recompute_basic_objective_left_inverse_ = true;
recompute_reduced_costs_ = true;
}
void ReducedCosts::PerturbCosts() {
SCOPED_TIME_STAT(&stats_);
VLOG(1) << "Perturbing the costs ... ";
Fractional max_cost_magnitude = 0.0;
const ColIndex structural_size =
matrix_.num_cols() - RowToColIndex(matrix_.num_rows());
for (ColIndex col(0); col < structural_size; ++col) {
max_cost_magnitude =
std::max(max_cost_magnitude, std::abs(objective_[col]));
}
cost_perturbations_.AssignToZero(matrix_.num_cols());
for (ColIndex col(0); col < structural_size; ++col) {
const Fractional objective = objective_[col];
const Fractional magnitude =
(1.0 + std::uniform_real_distribution<double>()(*random_)) *
(parameters_.relative_cost_perturbation() * std::abs(objective) +
parameters_.relative_max_cost_perturbation() * max_cost_magnitude);
DCHECK_GE(magnitude, 0.0);
// The perturbation direction is such that a dual-feasible solution stays
// feasible. This is important.
const VariableType type = variables_info_.GetTypeRow()[col];
switch (type) {
case VariableType::UNCONSTRAINED:
break;
case VariableType::FIXED_VARIABLE:
break;
case VariableType::LOWER_BOUNDED:
cost_perturbations_[col] = magnitude;
break;
case VariableType::UPPER_BOUNDED:
cost_perturbations_[col] = -magnitude;
break;
case VariableType::UPPER_AND_LOWER_BOUNDED:
// Here we don't necessarily maintain the dual-feasibility of a dual
// feasible solution, however we can always shift the variable to its
// other bound (because it is boxed) to restore dual-feasiblity. This is
// done by MakeBoxedVariableDualFeasible() at the end of the dual
// phase-I algorithm.
if (objective > 0.0) {
cost_perturbations_[col] = magnitude;
} else if (objective < 0.0) {
cost_perturbations_[col] = -magnitude;
}
break;
}
}
}
void ReducedCosts::ShiftCost(ColIndex col) {
SCOPED_TIME_STAT(&stats_);
const Fractional kToleranceFactor = parameters_.degenerate_ministep_factor();
const Fractional small_step =
dual_feasibility_tolerance_ *
(reduced_costs_[col] > 0.0 ? kToleranceFactor : -kToleranceFactor);
IF_STATS_ENABLED(stats_.cost_shift.Add(reduced_costs_[col] + small_step));
cost_perturbations_[col] -= reduced_costs_[col] + small_step;
reduced_costs_[col] = -small_step;
}
void ReducedCosts::ClearAndRemoveCostShifts() {
SCOPED_TIME_STAT(&stats_);
cost_perturbations_.AssignToZero(matrix_.num_cols());
recompute_basic_objective_ = true;
recompute_basic_objective_left_inverse_ = true;
recompute_reduced_costs_ = true;
are_reduced_costs_precise_ = false;
}
void ReducedCosts::MaintainDualInfeasiblePositions(bool maintain) {
are_dual_infeasible_positions_maintained_ = maintain;
if (are_dual_infeasible_positions_maintained_ && !recompute_reduced_costs_) {
ResetDualInfeasibilityBitSet();
}
}
const DenseRow& ReducedCosts::GetReducedCosts() {
SCOPED_TIME_STAT(&stats_);
RecomputeReducedCostsAndPrimalEnteringCandidatesIfNeeded();
return reduced_costs_;
}
const DenseColumn& ReducedCosts::GetDualValues() {
SCOPED_TIME_STAT(&stats_);
ComputeBasicObjectiveLeftInverse();
return Transpose(basic_objective_left_inverse_.values);
}
void ReducedCosts::RecomputeReducedCostsAndPrimalEnteringCandidatesIfNeeded() {
if (basis_factorization_.IsRefactorized()) {
must_refactorize_basis_ = false;
}
if (recompute_reduced_costs_) {
ComputeReducedCosts();
if (are_dual_infeasible_positions_maintained_) {
ResetDualInfeasibilityBitSet();
}
}
}
void ReducedCosts::ComputeBasicObjective() {
SCOPED_TIME_STAT(&stats_);
const ColIndex num_cols_in_basis = RowToColIndex(matrix_.num_rows());
cost_perturbations_.resize(matrix_.num_cols(), 0.0);
basic_objective_.resize(num_cols_in_basis, 0.0);
for (ColIndex col(0); col < num_cols_in_basis; ++col) {
const ColIndex basis_col = basis_[ColToRowIndex(col)];
basic_objective_[col] =
objective_[basis_col] + cost_perturbations_[basis_col];
}
recompute_basic_objective_ = false;
recompute_basic_objective_left_inverse_ = true;
}
void ReducedCosts::ComputeReducedCosts() {
SCOPED_TIME_STAT(&stats_);
if (recompute_basic_objective_left_inverse_) {
ComputeBasicObjectiveLeftInverse();
}
Fractional dual_residual_error(0.0);
const ColIndex num_cols = matrix_.num_cols();
reduced_costs_.resize(num_cols, 0.0);
const DenseBitRow& is_basic = variables_info_.GetIsBasicBitRow();
#ifdef OMP
const int num_omp_threads = parameters_.num_omp_threads();
#else
const int num_omp_threads = 1;
#endif
if (num_omp_threads == 1) {
for (ColIndex col(0); col < num_cols; ++col) {
reduced_costs_[col] = objective_[col] + cost_perturbations_[col] -
matrix_.ColumnScalarProduct(
col, basic_objective_left_inverse_.values);
// We also compute the dual residual error y.B - c_B.
if (is_basic.IsSet(col)) {
dual_residual_error =
std::max(dual_residual_error, std::abs(reduced_costs_[col]));
}
}
} else {
#ifdef OMP
// In the multi-threaded case, perform the same computation as in the
// single-threaded case above.
std::vector<Fractional> thread_local_dual_residual_error(num_omp_threads,
0.0);
const int parallel_loop_size = num_cols.value();
#pragma omp parallel for num_threads(num_omp_threads)
for (int i = 0; i < parallel_loop_size; i++) {
const ColIndex col(i);
reduced_costs_[col] = objective_[col] + objective_perturbation_[col] -
matrix_.ColumnScalarProduct(
col, basic_objective_left_inverse_.values);
if (is_basic.IsSet(col)) {
thread_local_dual_residual_error[omp_get_thread_num()] =
std::max(thread_local_dual_residual_error[omp_get_thread_num()],
std::abs(reduced_costs_[col]));
}
}
// end of omp parallel for
for (int i = 0; i < num_omp_threads; i++) {
dual_residual_error =
std::max(dual_residual_error, thread_local_dual_residual_error[i]);
}
#endif // OMP
}
recompute_reduced_costs_ = false;
are_reduced_costs_recomputed_ = true;
are_reduced_costs_precise_ = basis_factorization_.IsRefactorized();
// It is not resonable to have a dual tolerance lower than the current
// dual_residual_error, otherwise we may never terminate (This is happening on
// dfl001.mps with a low dual_feasibility_tolerance). Note that since we
// recompute the reduced costs with maximum precision before really exiting,
// it is fine to do a couple of iterations with a high zero tolerance.
dual_feasibility_tolerance_ = parameters_.dual_feasibility_tolerance();
if (dual_residual_error > dual_feasibility_tolerance_) {
VLOG(2) << "Changing dual_feasibility_tolerance to " << dual_residual_error;
dual_feasibility_tolerance_ = dual_residual_error;
}
}
void ReducedCosts::ComputeBasicObjectiveLeftInverse() {
SCOPED_TIME_STAT(&stats_);
if (recompute_basic_objective_) {
ComputeBasicObjective();
}
basic_objective_left_inverse_.values = basic_objective_;
basic_objective_left_inverse_.non_zeros.clear();
basis_factorization_.LeftSolve(&basic_objective_left_inverse_);
recompute_basic_objective_left_inverse_ = false;
IF_STATS_ENABLED(stats_.basic_objective_left_inverse_density.Add(
Density(basic_objective_left_inverse_.values)));
// TODO(user): Estimate its accuracy by a few scalar products, and refactorize
// if it is above a threshold?
}
// Note that the update is such than the entering reduced cost is always set to
// 0.0. In particular, because of this we can step in the wrong direction for
// the dual method if the reduced cost is slightly infeasible.
void ReducedCosts::UpdateReducedCosts(ColIndex entering_col,
ColIndex leaving_col,
RowIndex leaving_row, Fractional pivot,
UpdateRow* update_row) {
DCHECK_NE(entering_col, leaving_col);
DCHECK_NE(pivot, 0.0);
if (recompute_reduced_costs_) return;
// Note that this is precise because of the CheckPrecision().
const Fractional entering_reduced_cost = reduced_costs_[entering_col];
// Nothing to do if the entering reduced cost is 0.0.
// This correspond to a dual degenerate pivot.
if (entering_reduced_cost == 0.0) {
VLOG(2) << "Reduced costs didn't change.";
// TODO(user): the reduced costs may still be "precise" in this case, but
// other parts of the code assume that if they are precise then the basis
// was just refactorized in order to recompute them which is not the case
// here. Clean this up.
are_reduced_costs_precise_ = false;
return;
}
are_reduced_costs_recomputed_ = false;
update_row->ComputeUpdateRow(leaving_row);
SCOPED_TIME_STAT(&stats_);
const ColIndex first_slack_col =
matrix_.num_cols() - RowToColIndex(matrix_.num_rows());
// Update the leaving variable reduced cost.
// '-pivot' is the value of the entering_edge at 'leaving_row'.
// The edge of the 'leaving_col' in the new basis is equal to
// 'entering_edge / -pivot'.
const Fractional new_leaving_reduced_cost = entering_reduced_cost / -pivot;
for (const ColIndex col : update_row->GetNonZeroPositions()) {
// Because the columns are in order, it is safe to break here.
if (col >= first_slack_col) break;
const Fractional coeff = update_row->GetCoefficient(col);
reduced_costs_[col] += new_leaving_reduced_cost * coeff;
}
are_reduced_costs_precise_ = false;
// Always update the slack variable position so we have the dual values and
// we can use them in ComputeCurrentDualResidualError().
const ScatteredRow& unit_row_left_inverse =
update_row->GetUnitRowLeftInverse();
if (unit_row_left_inverse.non_zeros.empty()) {
const ColIndex num_cols = unit_row_left_inverse.values.size();
for (ColIndex col(0); col < num_cols; ++col) {
const ColIndex slack_col = first_slack_col + col;
const Fractional coeff = unit_row_left_inverse[col];
reduced_costs_[slack_col] += new_leaving_reduced_cost * coeff;
}
} else {
for (const ColIndex col : unit_row_left_inverse.non_zeros) {
const ColIndex slack_col = first_slack_col + col;
const Fractional coeff = unit_row_left_inverse[col];
reduced_costs_[slack_col] += new_leaving_reduced_cost * coeff;
}
}
reduced_costs_[leaving_col] = new_leaving_reduced_cost;
// In the dual, since we compute the update before selecting the entering
// variable, this cost is still in the update_position_list, so we make sure
// it is 0 here.
reduced_costs_[entering_col] = 0.0;
}
bool ReducedCosts::IsValidPrimalEnteringCandidate(ColIndex col) const {
const Fractional reduced_cost = reduced_costs_[col];
const DenseBitRow& can_decrease = variables_info_.GetCanDecreaseBitRow();
const DenseBitRow& can_increase = variables_info_.GetCanIncreaseBitRow();
const Fractional tolerance = dual_feasibility_tolerance_;
return (can_increase.IsSet(col) && (reduced_cost < -tolerance)) ||
(can_decrease.IsSet(col) && (reduced_cost > tolerance));
}
void ReducedCosts::ResetDualInfeasibilityBitSet() {
SCOPED_TIME_STAT(&stats_);
const ColIndex num_cols = matrix_.num_cols();
is_dual_infeasible_.ClearAndResize(num_cols);
UpdateEnteringCandidates(variables_info_.GetIsRelevantBitRow());
}
// A variable is an entering candidate if it can move in a direction that
// minimizes the objective. That is, its value needs to increase if its
// reduced cost is negative or it needs to decrease if its reduced cost is
// positive (see the IsValidPrimalEnteringCandidate() function). Note that
// this is the same as a dual-infeasible variable.
//
// Optimization for speed (The function is about 40% faster than the code in
// IsValidPrimalEnteringCandidate() or a switch() on variable_status[col]). This
// relies on the fact that (double1 > double2) returns a 1 or 0 result when
// converted to an int. It also uses an XOR (which appears to be faster) since
// the two conditions on the reduced cost are exclusive.
template <typename ColumnsToUpdate>
void ReducedCosts::UpdateEnteringCandidates(const ColumnsToUpdate& cols) {
SCOPED_TIME_STAT(&stats_);
const Fractional tolerance = dual_feasibility_tolerance_;
const DenseBitRow& can_decrease = variables_info_.GetCanDecreaseBitRow();
const DenseBitRow& can_increase = variables_info_.GetCanIncreaseBitRow();
for (const ColIndex col : cols) {
const Fractional reduced_cost = reduced_costs_[col];
is_dual_infeasible_.SetBitFromOtherBitSets(
col, can_decrease, reduced_cost > tolerance, can_increase,
reduced_cost < -tolerance);
DCHECK_EQ(is_dual_infeasible_.IsSet(col),
IsValidPrimalEnteringCandidate(col));
}
}
void ReducedCosts::UpdateBasicObjective(ColIndex entering_col,
RowIndex leaving_row) {
SCOPED_TIME_STAT(&stats_);
basic_objective_[RowToColIndex(leaving_row)] =
objective_[entering_col] + cost_perturbations_[entering_col];
recompute_basic_objective_left_inverse_ = true;
}
} // namespace glop
} // namespace operations_research