-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathvolcano_plot.R
155 lines (140 loc) · 4.55 KB
/
volcano_plot.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
#' Plot a volcano plot of a geneset
#'
#' Plot a volcano plot for the geneset of the provided data, with the remaining
#' genes as shaded dots in the background of the plot.
#'
#' @param res_de A `DESeqResults` object.
#' @param annotation_obj A `data.frame` object with the feature annotation
#' information, with at least two columns, `gene_id` and `gene_name`.
#' @param FDR Numeric value, specifying the significance level for thresholding
#' adjusted p-values. Defaults to 0.05.
#' @param color Character string to specify color of filtered points in the plot.
#' Defaults to #1a81c2 (shade of blue).
#' @param volcano_labels Integer, maximum number of labels for the gene sets to be
#' plotted as labels on the volcano scatter plot. Defaults to 25.
#' @param plot_title Character string, to specify the title of the plot,
#' displayed over the volcano plot. If left to `NULL` as by default, it tries to use
#' the information on the geneset identifier provided.
#'
#' @return A plot returned by the [ggplot()] function
#' @export
#'
#' @examples
#' library("macrophage")
#' library("DESeq2")
#' library("org.Hs.eg.db")
#' library("AnnotationDbi")
#' library("apeglm")
#' library("ggplot2")
#' library("ggrepel")
#'
#' # dds object
#' data("gse", package = "macrophage")
#' dds_macrophage <- DESeqDataSet(gse, design = ~ line + condition)
#' rownames(dds_macrophage) <- substr(rownames(dds_macrophage), 1, 15)
#' dds_macrophage <- estimateSizeFactors(dds_macrophage)
#'
#'
#' # annotation object
#' anno_df <- data.frame(
#' gene_id = rownames(dds_macrophage),
#' gene_name = mapIds(org.Hs.eg.db,
#' keys = rownames(dds_macrophage),
#' column = "SYMBOL",
#' keytype = "ENSEMBL"
#' ),
#' stringsAsFactors = FALSE,
#' row.names = rownames(dds_macrophage)
#' )
#'
#' # res object
#' dds_macrophage <- DESeq(dds_macrophage)
#' res_de <- results(dds_macrophage, name = "condition_IFNg_vs_naive", alpha = 0.05)
#' res_de <- lfcShrink(dds_macrophage, coef = "condition_IFNg_vs_naive", type = "apeglm", res = res_de)
#'
#' volcano_plot(res_de,
#' anno_df,
#' )
volcano_plot <- function(res_de,
annotation_obj,
FDR = 0.05,
color = "#1a81c2",
alpha = 0.10,
volcano_labels = 25,
plot_title = NULL) {
# Prepare the data
gene_ids <- rownames(res_de)
gene_names <-
annotation_obj$gene_name[match(gene_ids, annotation_obj$gene_id)]
padj_complete <- res_de[gene_ids, "padj"]
filter <- sapply(padj_complete, function(x) x <= FDR)
padj_complete <- sapply(padj_complete, function(x) -log10(x))
log2FoldChange_complete <- res_de[gene_ids, "log2FoldChange"]
complete_data <- data.frame(
gene_ids,
padj_complete,
log2FoldChange_complete,
filter
)
colnames(complete_data) <- c(
"genes",
"logTransformedpvalue",
"log2FoldChange",
"significant"
)
# Prepare plotting
volcano_df <- complete_data
volcano_df$gene_names <- gene_names
max_x <- max(abs(range(complete_data["log2FoldChange"])))
limit_x <- max_x * c(-1, 1)
# Prepare plot title
if (is.null(plot_title)) {
title <- paste0("Volcano Plot")
} else {
title <- plot_title
}
# handling the tooltips (works if plotlyfied)
volcano_df$gene_info <- paste0(
"<b>",volcano_df$gene_names, "</b>",
"<br><i>GeneID</i>: ", volcano_df$genes,
"<br><i>Log2FC</i> = ", format(round(volcano_df$log2FoldChange, 2), nsmall = 2),
"<br><i>p-value (adjusted)</i> = ", format(res_de$padj))
# Plot data
p <- ggplot(
volcano_df,
aes_string(x = "log2FoldChange",
y = "logTransformedpvalue",
text = "gene_info")
) +
geom_point(aes_string(
color = "significant",
), alpha=alpha) +
labs(
x = "log2 Fold Change",
y = "-log10 p-value",
color = paste0("pvalue <= ", FDR)
) +
scale_x_continuous(limits = limit_x) +
scale_color_manual(
labels = c("significant", "not significant"),
breaks = c("TRUE", "FALSE"),
values = c(color, "grey25")
) +
ggtitle(title) +
theme_bw() +
theme(
legend.title = element_text(size = 9, face = "bold"),
legend.text = element_text(size = 8),
plot.title = element_text(size = 10, face = "bold")
)
# adding labels to the significant points
if (volcano_labels > 0) {
p <- p + geom_text_repel(
data = subset(volcano_df, filter),
aes_string(label = "gene_names"),
size = 4,
max.overlaps = volcano_labels
)
}
return(p)
}