-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtopic_modelling.py
105 lines (94 loc) · 3.31 KB
/
topic_modelling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import gensim
from gensim.utils import simple_preprocess
from gensim.parsing.preprocessing import STOPWORDS
from nltk.stem import WordNetLemmatizer, SnowballStemmer
from nltk.stem.porter import *
import nltk
from nltk.tokenize import sent_tokenize
import sys
nltk.download('wordnet')
nltk.download('punkt')
stemmer = SnowballStemmer("english")
def load_text(file_name):
with open(file_name, 'r') as file:
text = file.read()
sentences = sent_tokenize(text)
return sentences
def lemmatize_stemming(text):
return stemmer.stem(WordNetLemmatizer().lemmatize(text, pos='v'))
def preprocess(text):
result=[]
for token in gensim.utils.simple_preprocess(text) :
if token not in gensim.parsing.preprocessing.STOPWORDS and len(token) > 3:
result.append(lemmatize_stemming(token))
return result
def create_bow_dictionary(sentences):
# preprocessing the sentences by stemming them
processed_docs = []
for doc in sentences:
processed_docs.append(preprocess(doc))
# forming the dictionary
dictionary = gensim.corpora.Dictionary(processed_docs)
# creating the BOWs
bow_corpus = [dictionary.doc2bow(doc) for doc in processed_docs]
return dictionary, bow_corpus
# creating the LDA model
def create_model(topics, bow_corpus, dictionary):
lda_model = gensim.models.LdaMulticore(bow_corpus, num_topics = topics, id2word = dictionary, passes = 10, workers = 2)
return lda_model
# parsing the result of the topics generated
def extract_keywords(s):
words=[]
status=False
word=''
for ch in s:
if(ch=='"'):
status = not status;
elif(ch=='+'):
status=False
words.append(word)
word=''
elif(status):
word+=ch
words.append(word)
return words
def classify_topics(topics, lda_model, sentences):
keyword_dict = {}
for i in range(topics):
keyword_dict[i] = extract_keywords(lda_model.print_topics(-1)[i][1])
TOPICS = {}
for i in range(topics):
TOPICS[i] = []
for sent in sentences:
processed = preprocess(sent)
occurences = [0] * topics
for word in processed:
for i in range(topics):
if(word in keyword_dict[i]):
occurences[i]+=1
top_hit = max(occurences)
for i in range(topics):
if(occurences[i]==top_hit):
TOPICS[i].append(sent)
return keyword_dict, TOPICS
def get_topics(file_name, topics):
# enter the name of the file and the number of topics
sentences = load_text(file_name)
# create the dictionary and BOW corpus
dictionary, bow_corpus = create_bow_dictionary(sentences)
# create the LDA model
lda_model = create_model(topics, bow_corpus, dictionary)
# get the keywords of each topic, sentences in each topic
keyword_dict, TOPICS = classify_topics(topics, lda_model, sentences)
return TOPICS
if __name__ == '__main__':
try:
file_name = sys.argv[1]
no_of_topics = int(sys.argv[2])
topics = get_topics(file_name, no_of_topics)
for i in range(no_of_topics):
print('\nTopic {}: '.format(i))
text = " ".join(topics[i])
print(text, '\n')
except:
print('Enter correct file name and number of topics')