Skip to content

Latest commit

 

History

History
81 lines (59 loc) · 2.85 KB

spark_on_angel_quick_start.md

File metadata and controls

81 lines (59 loc) · 2.85 KB

Spark on Angel 快速入门

Spark on Angel同时支持YARN和Local两种运行模型,从而方便用户在本地调试程序。Spark on Angel的任务本质上是一个Spark的Application,但是多了一个附属的Application。在任务成功提交后,集群上将会出现两个独立的Application,一个是Spark Application, 一个是Angel-PS Application。两个Application不关联,一个Spark on Angel的作业删除,需要用户或者外部系统同时Kill两个。

部署流程

  1. 安装Spark

  2. 安装Angel

    1. 解压angel-<version>-bin.zip
    2. 配置angel-<version>-bin/bin/spark-on-angl-env.sh下的SPARK_HOME, ANGEL_HOME, ANGEL_HDFS_HOME三个环境变量
    3. 将解压后的angel-<version>-bin目录上传到HDFS路径
  3. 配置环境变量

    • 需要导入环境脚本:source ./spark-on-angel-env.sh
    • 要配置好Jar包位置:spark.ps.jars=$SONA_ANGEL_JARS和--jars $SONA_SPARK_JARS
    • 配置Angel PS需要的资源参数:spark.ps.instance, spark.ps.cores, spark.ps.memory

提交任务

完成Spark on Angel的程序编写打包后,可以通过spark-submit的脚本提交任务。不过,有以下几个需要注意的地方:

运行Example(PageRank)

#! /bin/bash
- cd angel-<version>-bin/bin; 
- ./SONA-example

脚本内容如下:

#!/bin/bash

source ./spark-on-angel-env.sh

${SPARK_HOME}/bin/spark-submit \
    --master yarn-cluster \
    --conf spark.ps.jars=$SONA_ANGEL_JARS \
    --conf spark.ps.instances=2 \
    --conf spark.ps.cores=2 \
    --conf spark.ps.memory=2g \
    --jars $SONA_SPARK_JARS\
    --name "PageRank-spark-on-angel" \
    --driver-memory 1g \
    --num-executors 2 \
    --executor-cores 2 \
    --executor-memory 2g \
    --class com.tencent.angel.spark.examples.cluster.PageRankExample \
    ./../lib/spark-on-angel-examples-${ANGEL_VERSION}.jar \
    input:${ANGEL_HDFS_HOME}/data/bc/edge \
    output:${ANGEL_HDFS_HOME} \
    resetProp:0.15

注意要指定Angel PS的资源参数:spark.ps.instance,spark.ps.cores,spark.ps.memory

PageRank代码片段

完整代码

val edges = GraphIO.load(input, isWeighted = isWeight,
      srcIndex = srcIndex, dstIndex = dstIndex,
      weightIndex = weightIndex, sep = sep)

    val ranks = version match {
      case "edge-cut" => edgeCutPageRank(edges, partitionNum, psPartitionNum,
        storageLevel, tol, resetProp, isWeight,
        useBalancePartition, balancePartitionPercent, numBatch, batchSize)
      case "vertex-cut" => vertexCutPageRank(edges, partitionNum, psPartitionNum,
        storageLevel, tol, resetProp, isWeight,
        useBalancePartition, balancePartitionPercent, numBatch, batchSize)
    }

    GraphIO.save(ranks, output)