-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathIN_tkonly.py
825 lines (715 loc) · 31.1 KB
/
IN_tkonly.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
#!/usr/bin/env python
# coding: utf-8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import uproot
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
import matplotlib.pyplot as plt
import numpy as np
import awkward as ak
mlvar_tk = ['tk_pt', 'tk_eta', 'tk_phi', 'tk_dxybs','tk_dxybs_sig','tk_dz','tk_dz_sig']
mlvar_vtx = ['vtx_ntk', 'vtx_dBV', 'vtx_dBVerr']
No = 50
Ds = len(mlvar_tk)
Nr = No*(No-1)
Dp = 20
Dv = len(mlvar_vtx)
Dv_ori = len(mlvar_vtx)
Dr = 1
De = 20
#lambda_dcorr = 0.5
lambda_param = 0.003
lambda_dcorr_met = 0
lr = 0.0005
use_dR = False
normalize_factors_tk = {}
normalize_factors_vtx = {}
fndir = "root://cmseos.fnal.gov//store/user/ali/MLTreeV43keeptkMETm/"
def GetXsec(sample):
xsecs = {
"qcdht0200_2017": 1.547e+06,
"qcdht0300_2017": 3.226E+05,
"qcdht0500_2017": 2.998E+04,
"qcdht0500sum_2017": 2.998E+04,
"qcdht0700_2017": 6.351E+03,
"qcdht1000_2017": 1.096E+03,
"qcdht1500_2017": 99.0,
"qcdht2000_2017": 20.2,
"wjetstolnu_2017": 5.28E+04,
"wjetstolnuext_2017": 5.28E+04,
"zjetstonunuht0100_2017": 302.8,
"zjetstonunuht0200_2017": 92.59,
"zjetstonunuht0400_2017": 13.18,
"zjetstonunuht0600_2017": 3.257,
"zjetstonunuht0800_2017": 1.49,
"zjetstonunuht1200_2017": 0.3419,
"zjetstonunuht2500_2017": 0.005146,
"ttbar_2017": 832,
"mfv_splitSUSY_tau000000100um_M2000_1800_2017": 1e-03,
"mfv_splitSUSY_tau000000100um_M2000_1900_2017": 1e-03,
"mfv_splitSUSY_tau000000300um_M2000_1800_2017": 1e-03,
"mfv_splitSUSY_tau000000300um_M2000_1900_2017": 1e-03,
"mfv_splitSUSY_tau000001000um_M2000_1800_2017": 1e-03,
"mfv_splitSUSY_tau000001000um_M2000_1900_2017": 1e-03,
"mfv_splitSUSY_tau000010000um_M2000_1800_2017": 1e-03,
"mfv_splitSUSY_tau000010000um_M2000_1900_2017": 1e-03,
}
if sample not in xsecs:
raise ValueError("Sample {} not available!!!".format(sample))
return xsecs[sample]
def GetNevts(f):
nevt = f['mfvWeight/h_sums'].values[f['mfvWeight/h_sums'].xlabels.index('sum_nevents_total')]
return nevt
def GetLoadFactor(fn,f,lumi):
'''
To make the fraction of background similar actual case (xsec normalization),
calculate the factor so that (Number_selected_events)*LoadFactor
represent the number of selected events from given sample at given luminosity
'''
nevt = GetNevts(f) # total number of events before selection
xsec = GetXsec(fn)
return xsec*lumi/nevt
def GetDataAndLabel(fns, split, isSignal, cut="(met_pt >= 150) & (max_SV_ntracks > 2)", lumi=100000):
tk_train = []
tk_val = []
tk_test = []
vtx_train = []
vtx_val = []
vtx_test = []
for fn in fns:
print("Loading sample {}...".format(fn))
f = uproot.open(fndir+fn+'.root')
loadfactor = GetLoadFactor(fn, f, lumi)
f = f["mfvJetTreer/tree_DV"]
if len(f['evt'].array())==0:
print( "no events!!!")
continue
variables = ['tk_pt', 'tk_eta', 'tk_phi', 'tk_dxybs','tk_dxybs_sig','tk_dz','tk_dz_sig','met_pt','vtx_ntk', 'vtx_dBV', 'vtx_dBVerr']
matrix = f.arrays(variables, namedecode="utf-8")
# apply cuts
evt_select = (matrix['met_pt']>=150) & (matrix['vtx_ntk']>2) & (matrix['vtx_dBVerr']<0.0025)
for v in matrix:
matrix[v] = matrix[v][evt_select]
if len(matrix['met_pt'])==0:
print("no event after selection")
continue
# define the max number of events to pick and the number of train/val/test events to use
train_idx = -1
val_idx = -1
nevt_total = len(matrix['met_pt'])
nevt = int(loadfactor*nevt_total)
print(" {} events in file, {} are used".format(nevt_total, nevt))
if nevt>nevt_total:
nevt = nevt_total
if isSignal:
nevt = nevt_total
train_idx = int(nevt*split[0])
val_idx = int(nevt*(split[0]+split[1]))
# train
m_tk = np.array([matrix[v][:train_idx] for v in mlvar_tk])
m_vtx = np.array([matrix[v][:train_idx] for v in mlvar_vtx]).T
#m_vtx = np.reshape(m_vtx, m_vtx.shape+(1,))
m = zeropadding(m_tk, No)
if len(m)>0:
tk_train.append(m)
vtx_train.append(m_vtx)
# val
m_tk = np.array([matrix[v][train_idx+1:val_idx] for v in mlvar_tk])
m_vtx = np.array([matrix[v][train_idx+1:val_idx] for v in mlvar_vtx]).T
#m_vtx = np.reshape(m_vtx, m_vtx.shape+(1,))
m = zeropadding(m_tk, No)
if len(m)>0:
tk_val.append(m)
vtx_val.append(m_vtx)
# test
m_tk = np.array([matrix[v][val_idx+1:nevt] for v in mlvar_tk])
m_vtx = np.array([matrix[v][val_idx+1:nevt] for v in mlvar_vtx]).T
#m_vtx = np.reshape(m_vtx, m_vtx.shape+(1,))
m = zeropadding(m_tk, No)
if len(m)>0:
tk_test.append(m)
vtx_test.append(m_vtx)
tk_train = np.concatenate(tk_train)
vtx_train = np.concatenate(vtx_train)
tk_val = np.concatenate(tk_val)
vtx_val = np.concatenate(vtx_val)
tk_test = np.concatenate(tk_test)
vtx_test = np.concatenate(vtx_test)
if not isSignal:
label_train = np.zeros((vtx_train.shape[0], 1))
label_val = np.zeros((vtx_val.shape[0], 1))
label_test = np.zeros((vtx_test.shape[0], 1))
elif isSignal:
label_train = np.ones((vtx_train.shape[0], 1))
label_val = np.ones((vtx_val.shape[0], 1))
label_test = np.ones((vtx_test.shape[0], 1))
return (tk_train, vtx_train, label_train), (tk_val, vtx_val, label_val), (tk_test, vtx_test, label_test)
def importData(split, normalize=True,shuffle=True):
'''
import training/val/testing data from root file normalize, padding and shuffle if needed
split: [train, val, test] fraction
returns data_train/val/test, which are tuples, structure:
(data, ntk, label, met, data_no_normalized)
'''
fns_bkg = [
"qcdht0200_2017",
"qcdht0300_2017",
"qcdht0500sum_2017",
"qcdht0700_2017",
"qcdht1000_2017",
"qcdht1500_2017",
"qcdht2000_2017",
"wjetstolnu_2017",
#"wjetstolnuext_2017",
"zjetstonunuht0100_2017",
"zjetstonunuht0200_2017",
"zjetstonunuht0400_2017",
"zjetstonunuht0600_2017",
"zjetstonunuht0800_2017",
"zjetstonunuht1200_2017",
"zjetstonunuht2500_2017",
"ttbar_2017",
]
fns_signal = [
"mfv_splitSUSY_tau000000100um_M2000_1800_2017",
"mfv_splitSUSY_tau000000100um_M2000_1900_2017",
"mfv_splitSUSY_tau000000300um_M2000_1800_2017",
"mfv_splitSUSY_tau000000300um_M2000_1900_2017",
"mfv_splitSUSY_tau000001000um_M2000_1800_2017",
"mfv_splitSUSY_tau000001000um_M2000_1900_2017",
"mfv_splitSUSY_tau000010000um_M2000_1800_2017",
"mfv_splitSUSY_tau000010000um_M2000_1900_2017",
]
train_sig, val_sig, test_sig = GetDataAndLabel(fns_signal, split, True)
train_bkg, val_bkg, test_bkg = GetDataAndLabel(fns_bkg, split, False)
sig_bkg_weight = float(len(train_bkg[0]))/len(train_sig[0])
print("Training data: {0} signals {1} backgrounds".format(len(train_sig[0]), len(train_bkg[0])))
nitems = len(train_sig)
data_train = [None]*(nitems)
data_val = [None]*(nitems)
data_test = [None]*(nitems)
for i in range(nitems):
data_train[i] = np.concatenate([train_sig[i], train_bkg[i]])
data_val[i] = np.concatenate([val_sig[i], val_bkg[i]])
data_test[i] = np.concatenate([test_sig[i], test_bkg[i]])
if shuffle:
shuffler = np.random.permutation(len(data_train[0]))
for i in range(nitems):
data_train[i] = data_train[i][shuffler]
shuffler = np.random.permutation(len(data_val[0]))
for i in range(nitems):
data_val[i] = data_val[i][shuffler]
shuffler = np.random.permutation(len(data_test[0]))
for i in range(nitems):
data_test[i] = data_test[i][shuffler]
if normalize:
for i in range(2):
data_train[i] = normalizedata(data_train[i])
data_val[i] = normalizedata(data_val[i])
data_test[i] = normalizedata(data_test[i])
return data_train, data_test, data_val, sig_bkg_weight
def zeropadding(matrix, l):
'''
make the number of object the same for every event, zero padding those
df: np.array of data
l: expected length of each event (# objects)
'''
m_mod = []
for i in range(matrix.shape[1]):
# transfer df to matrix for each event
m = np.array([matrix[:,i][v] for v in range(len(mlvar_tk))])
sortedidx = np.argsort(m[0,:])[::-1]
m = m[:,sortedidx]
#m = np.array(df.loc[i].T)
if m.shape[1]<l:
idx_mod = l-m.shape[1]
pad = np.zeros((m.shape[0],idx_mod))
m_mod.append(np.concatenate((m,pad), axis=1))
#print(np.concatenate((m[i],pad), axis=1))
else:
m_mod.append(m[:,0:l])
#print (m_mod[i].shape)
return np.array(m_mod)
def normalizedata(data):
if len(data.shape)==3:
n_features_data = Ds
for i in range(n_features_data):
l = np.sort(np.reshape(data[:,i,:],[1,-1])[0])
l = l[l!=0]
median = l[int(len(l)*0.5)]
l_min = l[int(len(l)*0.05)]
l_max = l[int(len(l)*0.95)]
normalize_factors_tk[i] = [median,l_min,l_max]
print(normalize_factors_tk[i])
data[:,i,:][data[:,i,:]!=0] = (data[:,i,:][data[:,i,:]!=0]-median)*(2.0/(l_max-l_min))
elif len(data.shape)==2:
for i in range(Dv_ori):
l = np.sort(np.reshape(data[:,i],[1,-1])[0])
median = l[int(len(l)*0.5)]
l_min = l[int(len(l)*0.05)]
l_max = l[int(len(l)*0.95)]
normalize_factors_vtx[i] = [median,l_min,l_max]
print(normalize_factors_vtx[i])
data[:,i] = (data[:,i]-median)*(2.0/(l_max-l_min))
return data
# In[3]:
def distance_corr(var_1, var_2, normedweight, power=1):
"""var_1: First variable to decorrelate (eg mass)
var_2: Second variable to decorrelate (eg classifier output)
normedweight: Per-example weight. Sum of weights should add up to N (where N is the number of examples)
power: Exponent used in calculating the distance correlation
va1_1, var_2 and normedweight should all be 1D tf tensors with the same number of entries
Usage: Add to your loss function. total_loss = BCE_loss + lambda * distance_corr
"""
xx = tf.reshape(var_1, [-1, 1])
xx = tf.tile(xx, [1, tf.size(var_1)])
xx = tf.reshape(xx, [tf.size(var_1), tf.size(var_1)])
yy = tf.transpose(xx)
amat = tf.math.abs(xx-yy)
xx = tf.reshape(var_2, [-1, 1])
xx = tf.tile(xx, [1, tf.size(var_2)])
xx = tf.reshape(xx, [tf.size(var_2), tf.size(var_2)])
yy = tf.transpose(xx)
bmat = tf.math.abs(xx-yy)
amatavg = tf.reduce_mean(amat*normedweight, axis=1)
bmatavg = tf.reduce_mean(bmat*normedweight, axis=1)
minuend_1 = tf.tile(amatavg, [tf.size(var_1)])
minuend_1 = tf.reshape(minuend_1, [tf.size(var_1), tf.size(var_1)])
minuend_2 = tf.transpose(minuend_1)
Amat = amat-minuend_1-minuend_2+tf.reduce_mean(amatavg*normedweight)
minuend_1 = tf.tile(bmatavg, [tf.size(var_2)])
minuend_1 = tf.reshape(minuend_1, [tf.size(var_2), tf.size(var_2)])
minuend_2 = tf.transpose(minuend_1)
Bmat = bmat-minuend_1-minuend_2+tf.reduce_mean(bmatavg*normedweight)
ABavg = tf.reduce_mean(Amat*Bmat*normedweight,axis=1)
AAavg = tf.reduce_mean(Amat*Amat*normedweight,axis=1)
BBavg = tf.reduce_mean(Bmat*Bmat*normedweight,axis=1)
epsilon = 1e-08
if power==1:
dCorr = tf.reduce_mean(ABavg*normedweight)/tf.math.sqrt(tf.reduce_mean(AAavg*normedweight)*tf.reduce_mean(BBavg*normedweight) + epsilon)
elif power==2:
dCorr = (tf.reduce_mean(ABavg*normedweight))**2/(tf.reduce_mean(AAavg*normedweight)*tf.reduce_mean(BBavg*normedweight) + epsilon)
else:
dCorr = (tf.reduce_mean(ABavg*normedweight)/tf.math.sqrt(tf.reduce_mean(AAavg*normedweight)*tf.reduce_mean(BBavg*normedweight) + epsilon))**power
return dCorr
def getRmatrix(mini_batch_num=100):
# Set Rr_data, Rs_data, Ra_data and X_data
Rr_data=np.zeros((mini_batch_num,No,Nr),dtype=float)
Rs_data=np.zeros((mini_batch_num,No,Nr),dtype=float)
Ra_data=np.ones((mini_batch_num,Dr,Nr),dtype=float)
cnt=0
for i in range(No):
for j in range(No):
if(i!=j):
Rr_data[:,i,cnt]=1.0
Rs_data[:,j,cnt]=1.0
cnt+=1
return Rr_data, Rs_data, Ra_data
def getRmatrix_dR2(jets):
n_evt = len(jets)
# Set Rr_data, Rs_data, Ra_data and X_data
Rr_data=np.zeros((n_evt,No,Nr),dtype=float)
Rs_data=np.zeros((n_evt,No,Nr),dtype=float)
Ra_data=np.ones((n_evt,Dr,Nr),dtype=float)
cnt=0
for i in range(No):
for j in range(No):
if(i!=j):
# use mask to get rid the padded non-existing jets
mask = np.multiply(jets[:,0,i],jets[:,0,j])==0
dR2 = np.sum(np.square(jets[:,0:2,i]-jets[:,0:2,j]),axis=1)
dR2[mask] = -1
dR2_inverse = (1e-03)/dR2
dR2_inverse[mask] = 0
Rr_data[:,i,cnt]=dR2_inverse
Rs_data[:,j,cnt]=dR2_inverse
cnt+=1
R_sum = np.sum(Rr_data,axis=(1,2))
#Rr_data = Rr_data/R_sum
#Rs_data = Rs_data/R_sum
for i in range(len(R_sum)):
if R_sum[i]==0:
continue
Rr_data[i] = Rr_data[i]/R_sum[i]
Rs_data[i] = Rs_data[i]/R_sum[i]
return Rr_data, Rs_data, Ra_data
# In[4]:
def m(O,Rr,Rs,Ra):
'''
The marshalling function that rearranges the object and relations into interacting terms
In the code, ORr-ORs is used instead of ORr, ORs seperately
'''
return tf.concat([(tf.matmul(O,Rr)-tf.matmul(O,Rs)), Ra],1)
def phi_R(B):
'''
The phi_R function that predict the effect of each interaction by applying f_R to each column of B
'''
h_size = 50
B_trans = tf.transpose(B,[0,2,1])
B_trans = tf.reshape(B_trans, [-1,(Ds+Dr)])
w1 = tf.Variable(tf.random.truncated_normal([(Ds+Dr),h_size], stddev=0.1), name="r_w1", dtype=tf.float32)
b1 = tf.Variable(tf.zeros([h_size]), name="r_b1", dtype=tf.float32)
h1 = tf.nn.relu(tf.matmul(B_trans, w1)+b1)
w2 = tf.Variable(tf.random.truncated_normal([h_size,h_size], stddev=0.1), name="r_w2", dtype=tf.float32)
b2 = tf.Variable(tf.zeros([h_size]), name="r_b2", dtype=tf.float32)
h2 = tf.nn.relu(tf.matmul(h1, w2)+b2)
w3 = tf.Variable(tf.random.truncated_normal([h_size,h_size], stddev=0.1), name="r_w3", dtype=tf.float32)
b3 = tf.Variable(tf.zeros([h_size]), name="r_b3", dtype=tf.float32)
h3 = tf.nn.relu(tf.matmul(h2, w3)+b3)
w4 = tf.Variable(tf.truncated_normal([h_size, h_size], stddev=0.1), name="r_w4", dtype=tf.float32)
b4 = tf.Variable(tf.zeros([h_size]), name="r_b4", dtype=tf.float32)
h4 = tf.nn.relu(tf.matmul(h3, w4) + b4)
w5 = tf.Variable(tf.truncated_normal([h_size, De], stddev=0.1), name="r_w5", dtype=tf.float32)
b5 = tf.Variable(tf.zeros([De]), name="r_b5", dtype=tf.float32)
h5 = tf.matmul(h4, w5) + b5
h5_trans=tf.reshape(h5,[-1,Nr,De])
h5_trans=tf.transpose(h5_trans,[0,2,1])
return h5_trans
def a(O,Rr,E):
'''
sum all effect applied on given receiver and then combine it with all other components
'''
E_bar = tf.matmul(E,tf.transpose(Rr,[0,2,1]))
return tf.concat([O,E_bar],1)
def phi_O(C):
'''
the phi_O function that predict the final result by applying f_O on each object
'''
h_size = 50
C_trans = tf.transpose(C,[0,2,1])
C_trans = tf.reshape(C_trans,[-1,Ds+De])
w1 = tf.Variable(tf.random.truncated_normal([Ds+De, h_size], stddev=0.1), name="o_w1", dtype=tf.float32)
b1 = tf.Variable(tf.zeros([h_size]), name="o_b1", dtype=tf.float32)
h1 = tf.nn.relu(tf.matmul(C_trans,w1)+b1)
w2 = tf.Variable(tf.random.truncated_normal([h_size,Dp], stddev=0.1), name="o_w2", dtype=tf.float32)
b2 = tf.Variable(tf.zeros([Dp]), name="o_b2", dtype=tf.float32)
h2 = tf.matmul(h1, w2)+b2
h2_trans = tf.reshape(h2, [-1, No, Dp])
h2_trans = tf.transpose(h2_trans, [0,2,1])
return h2_trans
def sumrows_O(P):
'''
sums rows of input P, take input with shape (None, Dp, No)
output shape (None, Dp, 1)
'''
return tf.reduce_sum(P, axis=2, keepdims=True)
def phi_output_sum(P):
'''
phi_output: NN that output the score of classifier
'''
h_size=100
w1 = tf.Variable(tf.random.truncated_normal([h_size, Dp], stddev=0.1), name="out_w1", dtype=tf.float32)
b1 = tf.Variable(tf.zeros([h_size,1]), name="out_b1", dtype=tf.float32)
h1 = tf.nn.relu(tf.matmul(w1, P)+b1)
w2 = tf.Variable(tf.random.truncated_normal([h_size, h_size], stddev=0.1), name="out_w2", dtype=tf.float32)
b2 = tf.Variable(tf.zeros([h_size,1]), name="out_b2", dtype=tf.float32)
h2 = tf.nn.relu(tf.matmul(w2, h1)+b2)
w3 = tf.Variable(tf.random.truncated_normal([1, h_size], stddev=0.1), name="out_w3", dtype=tf.float32)
b3 = tf.Variable(tf.zeros([1]), name="out_b3", dtype=tf.float32)
h3 = tf.matmul(w3, h2)+b3
#h3 = tf.nn.relu(tf.matmul(w2, h1)+b2)
#h1 = tf.math.sigmoid(tf.matmul(w1, P)+b1)
h3 = tf.reshape(h3, [-1,1])
return h3
def phi_output(P):
'''
phi_output: NN that output the score of classifier
'''
h_size=100
w1 = tf.Variable(tf.random.truncated_normal([No, h_size], stddev=0.1), name="out_w1", dtype=tf.float32)
b1 = tf.Variable(tf.zeros([Dp, h_size]), name="out_b1", dtype=tf.float32)
h1 = tf.nn.relu(tf.matmul(P, w1)+b1)
w2 = tf.Variable(tf.random.truncated_normal([h_size, 1], stddev=0.1), name="out_w2", dtype=tf.float32)
b2 = tf.Variable(tf.zeros([Dp,1]), name="out_b2", dtype=tf.float32)
h2 = tf.nn.relu(tf.matmul(h1, w2)+b2)
w3 = tf.Variable(tf.random.truncated_normal([1, Dp], stddev=0.1), name="out_w3", dtype=tf.float32)
b3 = tf.Variable(tf.zeros([1]), name="out_b3", dtype=tf.float32)
h3 = tf.matmul(w3, h2)+b3
#h1 = tf.math.sigmoid(tf.matmul(w1, P)+b1)
h3 = tf.reshape(h3, [-1,1])
return h3
def phi_output_nd(P):
'''
phi_output: NN that output the score of classifier
'''
h_size=100
w1 = tf.Variable(tf.random.truncated_normal([No, h_size], stddev=0.1), name="out_w1", dtype=tf.float32)
b1 = tf.Variable(tf.zeros([Dp, h_size]), name="out_b1", dtype=tf.float32)
h1 = tf.nn.relu(tf.matmul(P, w1)+b1)
w2 = tf.Variable(tf.random.truncated_normal([h_size, 1], stddev=0.1), name="out_w2", dtype=tf.float32)
b2 = tf.Variable(tf.zeros([Dp,1]), name="out_b2", dtype=tf.float32)
h2 = tf.nn.relu(tf.matmul(h1, w2)+b2)
h2 = tf.reshape(h2, [-1,Dp])
return h2
def phi_tk(T):
'''
phi_tk: NN that calculate final results using tracking information
'''
T_tk = tf.reshape(T, [-1,1,Dp])
h_size=100
w1 = tf.Variable(tf.random.truncated_normal([Dp, 1], stddev=0.1), name="tk_w1", dtype=tf.float32)
b1 = tf.Variable(tf.zeros([1, 1]), name="tk_b1", dtype=tf.float32)
h1 = tf.matmul(T_tk, w1)+b1
h1 = tf.reshape(h1, [-1,1])
return h1
def phi_vtx(T, vtx):
'''
phi_vtx: NN that add a 1d vtx information to previous output and output the final result
'''
tkvtx = tf.concat([T,vtx], 1)
tkvtx = tf.reshape(tkvtx, [-1,1,Dp+Dv])
m,v = tf.nn.moments(tkvtx,[0,1])
#tkvtx = tf.nn.batch_normalization(tkvtx, m, v, 0, 1, 1e-12)
h_size=20
w1 = tf.Variable(tf.random.truncated_normal([Dp+Dv, h_size], stddev=0.1), name="vtx_w1", dtype=tf.float32)
b1 = tf.Variable(tf.zeros([1,h_size]), name="vtx_b1", dtype=tf.float32)
h1 = tf.nn.relu(tf.matmul(tkvtx, w1)+b1)
w2 = tf.Variable(tf.random.truncated_normal([h_size,h_size], stddev=0.1), name="vtx_w2", dtype=tf.float32)
b2 = tf.Variable(tf.zeros([1,h_size]), name="vtx_b2", dtype=tf.float32)
h2 = tf.nn.relu(tf.matmul(h1, w2)+b2)
w3 = tf.Variable(tf.random.truncated_normal([h_size,1], stddev=0.1), name="vtx_w3", dtype=tf.float32)
b3 = tf.Variable(tf.zeros([1,1]), name="vtx_b3", dtype=tf.float32)
h3 = tf.matmul(h2, w3)+b3
h3 = tf.reshape(h3, [-1,1])
return h3
# In[5]:
train, val, test, pos_weight = importData([0.7,0.15,0.15], True, True)
#def train():
O = tf.placeholder(tf.float32, [None, Ds, No], name='O')
Rr = tf.placeholder(tf.float32, [None, No, Nr], name="Rr")
Rs = tf.placeholder(tf.float32, [None, No, Nr], name="Rs")
Ra = tf.placeholder(tf.float32, [None, Dr, Nr], name="Ra")
label = tf.placeholder(tf.float32, [None, 1], name="label")
ntk_max = tf.placeholder(tf.float32, [None, 1], name="ntk_max")
#met = tf.placeholder(tf.float32, [None, 1], name="met")
evtweight = tf.placeholder(tf.float32, [None, 1], name="evtweight")
lambda_dcorr = tf.placeholder(tf.float32, [], name="lambda_dcorr")
B = m(O,Rr,Rs,Ra)
E = phi_R(B)
C = a(O,Rr,E)
P = phi_O(C)
out = phi_output(P)
#P = tf.reduce_sum(P, axis=2, keepdims=True)
#out_tk = phi_output_nd(P)
#out = phi_tk(out_tk)
#out_tkonly_sigmoid = tf.math.sigmoid(out_tkonly, name="INscore_tk")
#out = phi_vtx(out_tk,vtx)
out_sigmoid = tf.math.sigmoid(out, name="INscore")
params_list = tf.global_variables()
#for i in range(len(params_list)):
#variable_summaries(params_list[i],i)
loss_bce = tf.nn.weighted_cross_entropy_with_logits(labels=label,logits=out,pos_weight=pos_weight)
loss_bce = tf.reduce_mean(loss_bce)
#loss_bce_tk = tf.nn.weighted_cross_entropy_with_logits(labels=label,logits=out_tkonly,pos_weight=pos_weight)
#loss_bce_tk = tf.reduce_mean(loss_bce_tk)
loss_param = tf.nn.l2_loss(E)
#loss = 0
for i in params_list:
loss_param+=tf.nn.l2_loss(i)
dcorr = distance_corr(ntk_max, out_sigmoid, evtweight)
#dcorr_met = distance_corr(met, out_sigmoid, evtweight)
loss = loss_bce+lambda_param*loss_param+lambda_dcorr*dcorr
#loss = loss_bce+lambda_param*loss_param
optimizer = tf.train.AdamOptimizer(lr)
trainer=optimizer.minimize(loss)
#dcorr_tk = distance_corr(ntk_max, out_tkonly_sigmoid, evtweight)
#loss_tk = loss_bce_tk+lambda_param*loss_param+lambda_dcorr*dcorr_tk
#trainer_tk=optimizer.minimize(loss_tk)
# tensorboard
tf.summary.scalar('loss_bce',loss_bce)
merged=tf.summary.merge_all()
writer=tf.summary.FileWriter('./')
sess=tf.InteractiveSession()
tf.global_variables_initializer().run()
batch_num = 128
if use_dR:
Rr_train, Rs_train, Ra_train = getRmatrix_dR2(train[4][:,1:3,:])
Rr_val, Rs_val, Ra_val = getRmatrix_dR2(val[4][:,1:3,:])
else:
Rr_train, Rs_train, Ra_train = getRmatrix(batch_num)
Rr_val, Rs_val, Ra_val = getRmatrix(batch_num)
# training
num_epochs_tk=0
num_epochs=100
history = []
history_val = []
h_bce = []
h_bce_val = []
h_dcorr = []
h_dcorr_val = []
h_dcorr_met = []
h_dcorr_met_val = []
min_loss = 100
for i in range(num_epochs):
lambda_dcorr_epoch = 0
if i>=10:
lambda_dcorr_epoch = 0.5
if i==num_epochs_tk:
print("training on Vertices info")
loss_train = 0
l_bce_train = 0
l_dcorr_train = 0
l_dcorr_met_train = 0
for j in range(int(len(train[0])/batch_num)):
batch_tk = train[0][j*batch_num:(j+1)*batch_num]
batch_ntk = train[1][j*batch_num:(j+1)*batch_num][:,0]
batch_ntk = np.reshape(batch_ntk, (-1,1))
batch_label = train[2][j*batch_num:(j+1)*batch_num]
if use_dR:
batch_Rr = Rr_train[j*batch_num:(j+1)*batch_num]
batch_Rs = Rs_train[j*batch_num:(j+1)*batch_num]
batch_Ra = Ra_train[j*batch_num:(j+1)*batch_num]
else:
batch_Rr = Rr_train
batch_Rs = Rs_train
batch_Ra = Ra_train
#batch_weight = (batch_label-1)*(-1)
#batch_weight[batch_weight==0] = 1e-08
batch_weight = np.ones(batch_label.shape)
#if i<num_epochs_tk:
# l_train,_,bce_train,dcorr_ntk_train=sess.run([loss_tk,trainer_tk,loss_bce_tk,dcorr_tk],feed_dict={O:batch_tk,Rr:batch_Rr,Rs:batch_Rs,Ra:batch_Ra,vtx:batch_vtx,label:batch_label,ntk_max:batch_ntk,evtweight:batch_weight})
# loss_train+=l_train
# l_bce_train+=bce_train
# l_dcorr_train+=dcorr_ntk_train
#else:
l_train,_,bce_train,dcorr_ntk_train=sess.run([loss,trainer,loss_bce,dcorr],feed_dict={O:batch_tk,Rr:batch_Rr,Rs:batch_Rs,Ra:batch_Ra,label:batch_label,ntk_max:batch_ntk,evtweight:batch_weight, lambda_dcorr:lambda_dcorr_epoch})
loss_train+=l_train
l_bce_train+=bce_train
l_dcorr_train+=dcorr_ntk_train
history.append(loss_train)
h_bce.append(l_bce_train)
#shuffle data after each epoch
train_idx = np.array(range(len(train[0])))
np.random.shuffle(train_idx)
for ite in range(len(train)):
train[ite] = train[ite][train_idx]
if use_dR:
Rr_train = Rr_train[train_idx]
Rs_train = Rs_train[train_idx]
Ra_train = Ra_train[train_idx]
# validation after each epoch
loss_val = 0
l_bce_val = 0
l_dcorr_val = 0
l_dcorr_met_val = 0
for j in range(int(len(val[0])/batch_num)):
batch_tk = val[0][j*batch_num:(j+1)*batch_num]
batch_ntk = val[1][j*batch_num:(j+1)*batch_num][:,0]
batch_ntk = np.reshape(batch_ntk, (-1,1))
batch_label = val[2][j*batch_num:(j+1)*batch_num]
if use_dR:
batch_Rr = Rr_val[j*batch_num:(j+1)*batch_num]
batch_Rs = Rs_val[j*batch_num:(j+1)*batch_num]
batch_Ra = Ra_val[j*batch_num:(j+1)*batch_num]
else:
batch_Rr = Rr_val
batch_Rs = Rs_val
batch_Ra = Ra_val
#batch_weight = (batch_label-1)*(-1)
#batch_weight[batch_weight==0] = 1e-08
batch_weight = np.ones(batch_label.shape)
#if i<num_epochs_tk:
# l_val,_,bce_val,dcorr_ntk_val=sess.run([loss_tk,out_tkonly_sigmoid,loss_bce_tk,dcorr_tk],feed_dict={O:batch_tk,Rr:batch_Rr,Rs:batch_Rs,Ra:batch_Ra,vtx:batch_vtx,label:batch_label,ntk_max:batch_ntk,evtweight:batch_weight})
# loss_val+=l_val
# l_bce_val+=bce_val
# l_dcorr_val+=dcorr_ntk_val
#else:
l_val,_,bce_val,dcorr_ntk_val=sess.run([loss,out_sigmoid,loss_bce,dcorr],feed_dict={O:batch_tk,Rr:batch_Rr,Rs:batch_Rs,Ra:batch_Ra,label:batch_label,ntk_max:batch_ntk,evtweight:batch_weight,lambda_dcorr:lambda_dcorr_epoch})
loss_val+=l_val
l_bce_val+=bce_val
l_dcorr_val+=dcorr_ntk_val
if i>=10 and loss_val < min_loss:
min_loss = loss_val
saver = tf.train.Saver()
saver.save(sess,"test_model")
history_val.append(loss_val)
h_bce_val.append(l_bce_val)
val_idx = np.array(range(len(val[0])))
np.random.shuffle(val_idx)
for ite in range(len(val)):
val[ite] = val[ite][val_idx]
if use_dR:
Rr_val = Rr_val[val_idx]
Rs_val = Rs_val[val_idx]
Ra_val = Ra_val[val_idx]
print("Epoch {}:".format(i))
print("Training loss: {0}, BCE: {1}, dcorr: {2}"
.format(loss_train/float(int(len(train[0])/batch_num)), l_bce_train/float(int(len(train[0])/batch_num)), l_dcorr_train/float(int(len(train[0])/batch_num)) ))
print("Validation loss: {0}, BCE: {1}, dcorr: {2} "
.format(loss_val/float(int(len(val[0])/batch_num)), l_bce_val/float(int(len(val[0])/batch_num)), l_dcorr_val/float(int(len(val[0])/batch_num)) ))
# In[8]:
outputs = ["INscore"]
saver = tf.train.Saver(max_to_keep=20)
saver.save(sess,"test_model")
pred = []
truth = []
ntk = []
median = normalize_factors_vtx[0][0]
l_min = normalize_factors_vtx[0][1]
l_max = normalize_factors_vtx[0][2]
print("vtx ntk median {}, l_min {}, l_max {}".format(median, l_min, l_max))
with tf.Session() as newsess:
newsaver = tf.train.import_meta_graph("test_model.meta")
newsaver.restore(newsess, tf.train.latest_checkpoint('./'))
if use_dR:
Rr_test, Rs_test, Ra_test = getRmatrix_dR2(test[4][:,1:3,:])
else:
Rr_test, Rs_test, Ra_test = getRmatrix(batch_num)
for j in range(int(len(test[0])/batch_num)+1):
if j==int(len(test[0])/batch_num):
next_idx = len(test[0])
if not use_dR:
Rr_test, Rs_test, Ra_test = getRmatrix(next_idx-j*batch_num)
else:
next_idx = (j+1)*batch_num
batch_tk = test[0][j*batch_num:next_idx]
batch_ntk = test[1][j*batch_num:next_idx][:,0]
batch_label = test[2][j*batch_num:next_idx]
if use_dR:
batch_Rr = Rr_test[j*batch_num:next_idx]
batch_Rs = Rs_test[j*batch_num:next_idx]
batch_Ra = Ra_test[j*batch_num:next_idx]
else:
batch_Rr = Rr_test
batch_Rs = Rs_test
batch_Ra = Ra_test
#batch_weight = (batch_label-1)*(-1)
#batch_weight[batch_weight==0] = 1e-08
batch_weight = np.ones(batch_label.shape)
b = newsess.run(['INscore:0'],feed_dict={'O:0':batch_tk,'Rr:0':batch_Rr,'Rs:0':batch_Rs,'Ra:0':batch_Ra})
pred.append(b[0])
truth.append(batch_label)
ntk.append(batch_ntk*((l_max-l_min)/2.0)+median)
pred = np.concatenate(pred,axis=None)
truth = np.concatenate(truth,axis=None)
ntk = np.concatenate(ntk,axis=None)
# In[9]:
#b = b[0]
#plt.hist(b[test[2]==1], bins=50, alpha=0.5, density=True, stacked=True, label="signal")
#plt.hist(b[test[2]==0], bins=50, alpha=0.5, density=True, stacked=True, label="background")
plt.hist(pred[truth==1], bins=50, alpha=0.5, density=True, stacked=True, label="signal")
plt.hist(pred[truth==0], bins=50, alpha=0.5, density=True, stacked=True, label="background")
plt.legend(loc="best")
plt.title("IN score")
plt.xlabel('score')
plt.ylabel('A.U.')
plt.savefig("INscore.png")
plt.close()
#t_A = test[2][(b>0.4) & (test[1]>=5)]
#t_B = test[2][(b<0.4) & (test[1]>=5)]
#t_C = test[2][(b>0.4) & (test[1]<5) & (test[1]>2)]
#t_D = test[2][(b<0.4) & (test[1]<5) & (test[1]>2)]
t_5tkh = truth[(pred>0.4) & (ntk>=5)]
t_5tkl = truth[(pred<0.4) & (ntk>=5)]
t_4tkh = truth[(pred>0.4) & (ntk==4)]
t_4tkl = truth[(pred<0.4) & (ntk==4)]
t_3tkh = truth[(pred>0.4) & (ntk==3)]
t_3tkl = truth[(pred<0.4) & (ntk==3)]
print("5-tk high: signals: {0} +- {1} backgrounds: {2} +- {3}".format(np.count_nonzero(t_5tkh), np.sqrt(np.count_nonzero(t_5tkh)), len(t_5tkh)-np.count_nonzero(t_5tkh), np.sqrt(len(t_5tkh)-np.count_nonzero(t_5tkh))))
print("5-tk low : signals: {0} +- {1} backgrounds: {2} +- {3}".format(np.count_nonzero(t_5tkl), np.sqrt(np.count_nonzero(t_5tkl)), len(t_5tkl)-np.count_nonzero(t_5tkl), np.sqrt(len(t_5tkl)-np.count_nonzero(t_5tkl))))
print("4-tk high: signals: {0} +- {1} backgrounds: {2} +- {3}".format(np.count_nonzero(t_4tkh), np.sqrt(np.count_nonzero(t_4tkh)), len(t_4tkh)-np.count_nonzero(t_4tkh), np.sqrt(len(t_4tkh)-np.count_nonzero(t_4tkh))))
print("4-tk low : signals: {0} +- {1} backgrounds: {2} +- {3}".format(np.count_nonzero(t_4tkl), np.sqrt(np.count_nonzero(t_4tkl)), len(t_4tkl)-np.count_nonzero(t_4tkl), np.sqrt(len(t_4tkl)-np.count_nonzero(t_4tkl))))
print("3-tk high: signals: {0} +- {1} backgrounds: {2} +- {3}".format(np.count_nonzero(t_3tkh), np.sqrt(np.count_nonzero(t_3tkh)), len(t_3tkh)-np.count_nonzero(t_3tkh), np.sqrt(len(t_3tkh)-np.count_nonzero(t_3tkh))))
print("3-tk low : signals: {0} +- {1} backgrounds: {2} +- {3}".format(np.count_nonzero(t_3tkl), np.sqrt(np.count_nonzero(t_3tkl)), len(t_3tkl)-np.count_nonzero(t_3tkl), np.sqrt(len(t_3tkl)-np.count_nonzero(t_3tkl))))