-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpl_tune_mlm.py
166 lines (139 loc) · 5.73 KB
/
pl_tune_mlm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import time
import torch
import logging
import argparse
import warnings
import numpy as np
import pytorch_lightning as pl
from pathlib import Path
from functools import partial
from typing import Tuple, Dict, Union
from transformers import RobertaTokenizerFast
from pytorch_lightning import seed_everything
from hyperopt import hp, fmin, tpe, space_eval
from pytorch_lightning.loggers import TensorBoardLogger
from pl_models.mlm_model import LitRoBERTaMLM
from utils.plot_utils import get_pl_mlm_losses
from utils.cmd_args import parse_tune_mlm_input
from utils.fs_utils import force_empty_directory, delete_file_if_exists
from data_preparation.processing import TOKENIZER_PATH, PROCESSED_DATA_PATH
BEST_VAL_LOSS = float('inf')
BEST_ARGS = None
def create_and_train_model(
args: Dict[str, Union[float, int]],
constants: Dict[str, Union[int, float, bool, Tuple[Path, Path, Path],
RobertaTokenizerFast, Path]]
) -> LitRoBERTaMLM:
"""Creates and pre-trains a PL MLM Ancient Greek RoBERTa model."""
# set the seed
seed_everything(args['seed'])
# create PL model
model = LitRoBERTaMLM(
tokenizer=constants['tokenizer'],
paths=constants['data-paths'],
hyperparams={**args, **constants}
)
# handle logging
logdir = constants['tb-logdir']
force_empty_directory(logdir)
logger = TensorBoardLogger(str(logdir), name='AG-RoBERTa-Temp', version=0)
# train the model (use a good GPU, otherwise it will take ages, trust me)
trainer = pl.Trainer(
default_root_dir=str(logdir),
gpus=1 if torch.cuda.is_available() else 0,
# gpus=torch.cuda.device_count(), # doesn't work for many, strange bug
# strategy='ddp',
max_epochs=constants['train-epochs'],
logger=logger,
log_every_n_steps=1,
enable_progress_bar=False,
enable_model_summary=False
)
trainer.fit(model)
return model
def objective(
args: Dict[str, Union[float, int]],
constants: Dict[str, Union[int, float, bool, Tuple[Path, Path, Path],
RobertaTokenizerFast, Path]]
) -> float:
"""Creates, trains a PL MLM Ancient Greek RoBERTa model and returns its
best loss (across all epochs) on the validation set."""
# the hidden size must be a multiple of the number of attention heads
hidden_size = args['hidden-size']
num_attention_heads = args['num-attention-heads']
hidden_size = (hidden_size // num_attention_heads) * num_attention_heads
args['hidden-size'] = hidden_size
# train the model (which is automatically evaluated at every epoch)
create_and_train_model(args, constants)
# get the validation losses for every epoch from the tensorboard logs
_, val_losses, _ = get_pl_mlm_losses(constants['tb-logdir'])
# the performance of the model is the best (minimum) validation loss
performance = min(val_losses)
# compare value to global best
global BEST_VAL_LOSS, BEST_ARGS
if performance < BEST_VAL_LOSS:
BEST_VAL_LOSS = performance
BEST_ARGS = args
# write it on the output file so that we can see the results real time
with open(constants['tune-logfile'], 'a') as fp:
fp.write(f'For hyperparameters: {args}\n'
f'The validation loss is {performance}.\n\n'
f'The best hyperparameters so far are {BEST_ARGS}\n'
f'Which give a validation loss of {BEST_VAL_LOSS}.\n\n\n\n')
return performance
def main(args: argparse.Namespace):
# define the constant values of the model
data_dir = PROCESSED_DATA_PATH/'MLM'
data_paths = (data_dir/'train-data.pkl',
data_dir/'val-data.pkl',
data_dir/'test-data.pkl')
tokenizer = RobertaTokenizerFast.from_pretrained(TOKENIZER_PATH)
tb_logdir = Path('logs')/'pl-mlm-hp-tuning'
tune_logfile = Path('logs')/'pl-mlm-hp-tuning-results.txt'
delete_file_if_exists(tune_logfile)
constants = {
'max-length': 512,
'mask-probability': 0.15,
'type-vocab-size': 1,
'use-lr-scheduler': True,
'scheduler-factor': 0.1,
'scheduler-patience': 10,
'scheduler-step-update': 10,
'train-epochs': 2,
'data-paths': data_paths,
'tokenizer': tokenizer,
'tb-logdir': tb_logdir,
'tune-logfile': tune_logfile
}
# define the hyperparameter search space of the model
search_space = {
'hidden-size': hp.choice('hidden-size', [256, 512, 768, 1024]),
'num-attention-heads': hp.quniform('num-attention-heads', 2, 16, 1),
'num-hidden-layers': hp.quniform('num-hidden-layers', 2, 12, 1),
'batch-size': hp.choice('batch-size', [4, 8, 16, 32]),
'learning-rate': hp.loguniform('learning-rate',
np.log(1e-6), np.log(3e-4)),
'weight-decay': hp.loguniform('weight-decay', np.log(1e-2), 0),
'seed': hp.choice('seed', [3, 13, 420, 3407, 80085])
}
# wrap the objective function so that it also receives the constant values
fmin_objective_fn = partial(objective, constants=constants)
# remove UserWarnings from pl
warnings.filterwarnings('ignore')
logging.getLogger('lightning').setLevel(logging.ERROR)
# bayesian search for optimal hyperparameters
start_time = time.time()
best = fmin(
fmin_objective_fn,
search_space,
algo=tpe.suggest,
max_evals=args.max_evals
)
end_time = time.time()
print(f'\nBest hyperparameters found are: {best}')
print(f'Which correspond to: {space_eval(search_space, best)}\n')
print(f'Time it took for tuning: {end_time - start_time:.2f} seconds.')
if __name__ == "__main__":
print()
arg = parse_tune_mlm_input()
main(arg)