-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhf_train_pos.py
233 lines (201 loc) · 8.11 KB
/
hf_train_pos.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import glob
import torch
import argparse
from transformers import (
RobertaTokenizerFast,
TrainingArguments,
IntervalStrategy,
SchedulerType,
RobertaForTokenClassification,
Trainer,
set_seed
)
from typing import Dict, Tuple
from torchmetrics import ConfusionMatrix
from sklearn.metrics import accuracy_score, f1_score
from transformers.training_args import OptimizerNames
from transformers.trainer_utils import EvalPrediction
from utils.cmd_args import parse_hf_pos_input
from ag_datasets.pos_dataset import PoSDataset
from utils.fs_utils import force_empty_directory
from utils.run_utils import hyperparams_from_config, get_seed
from utils.plot_utils import plot_pos_metrics, plot_confusion_matrix
from data_preparation.processing import (
TOKENIZER_PATH,
PROCESSED_DATA_PATH,
LABEL_ENCODER_PATH
)
class CustomMetricsTrainer(Trainer):
"""Overriding the Trainer Class so that custom metrics such as Accuracy
and F1 score can be logged during training."""
def compute_loss(self, model, inputs, return_outputs=False):
"""Override the compute_loss() function such that it logs the
accuracy and the f1 score."""
if self.label_smoother is not None and 'labels' in inputs:
labels = inputs.pop('labels')
else:
labels = None
outputs = model(**inputs)
# compute batch accuracy and f1 score for training batches
# Small hack: If the logits do not require a gradient, then this
# function has been called with torch.no_grad(), which means that
# this is an evaluation call, so don't compute the metrics as this
# block is meant only for training.
if 'labels' in inputs and outputs.logits.requires_grad:
preds = outputs.logits.detach().cpu().argmax(-1).reshape(-1).numpy()
labels_ = inputs['labels'].detach().cpu().reshape(-1).numpy()
valid_indices = labels_ != -100
preds = preds[valid_indices]
labels_ = labels_[valid_indices]
acc = accuracy_score(labels_, preds)
f1 = f1_score(labels_, preds, average='weighted')
self.log({'accuracy': acc, 'f1': f1})
# Save past state if it exists
if self.args.past_index >= 0:
self._past = outputs[self.args.past_index]
if labels is not None:
loss = self.label_smoother(outputs, labels)
else:
# We don't use .loss here since the model may return tuples
# instead of ModelOutput.
loss = outputs['loss'] if isinstance(outputs, dict) else outputs[0]
return (loss, outputs) if return_outputs else loss
def main(args: argparse.Namespace):
"""main() driver function."""
# args
seed = get_seed(args.seed)
set_seed(seed)
# empty the tensorboard and model directories
force_empty_directory(args.logdir)
force_empty_directory(args.savedir)
# create the model
model_dir = glob.glob(f'{args.pre_trained_model}/checkpoint-*')[0]
model = RobertaForTokenClassification.from_pretrained(
model_dir,
num_labels=PoSDataset.num_classes(LABEL_ENCODER_PATH)
)
# define the custom hyperparameters for the model here
custom_hyperparameters = {
'max-length': 512,
'batch-size': 4,
'learning-rate': 1e-4,
'weight-decay': 1e-2,
'decay-lr-at-percentage-of-steps': 0.1,
'train-epochs': 5
}
# either use those or load ones from a configuration file
hyperparams = custom_hyperparameters \
if args.config_path is None \
else hyperparams_from_config(args.config_path)
# load the tokenizer
tokenizer = RobertaTokenizerFast.from_pretrained(TOKENIZER_PATH)
# create datasets
data_dir = PROCESSED_DATA_PATH/'PoS'
train_dataset = PoSDataset(
tokenizer=tokenizer,
input_ids_path=data_dir/'pos-train-input-ids.pkl',
labels_path=data_dir/'pos-train-labels.pkl',
le_path=LABEL_ENCODER_PATH,
maxlen=hyperparams['max-length']
)
val_dataset = PoSDataset(
tokenizer=tokenizer,
input_ids_path=data_dir/'pos-val-input-ids.pkl',
labels_path=data_dir/'pos-val-labels.pkl',
le_path=LABEL_ENCODER_PATH,
maxlen=hyperparams['max-length']
)
test_dataset = PoSDataset(
tokenizer=tokenizer,
input_ids_path=data_dir/'pos-test-input-ids.pkl',
labels_path=data_dir/'pos-test-labels.pkl',
le_path=LABEL_ENCODER_PATH,
maxlen=hyperparams['max-length']
)
# train args
training_args = TrainingArguments(
output_dir=args.savedir,
overwrite_output_dir=True,
evaluation_strategy=IntervalStrategy.EPOCH,
prediction_loss_only=False,
per_device_train_batch_size=hyperparams['batch-size'],
per_device_eval_batch_size=hyperparams['batch-size'],
learning_rate=hyperparams['learning-rate'],
weight_decay=hyperparams['weight-decay'],
adam_beta1=0.9,
adam_beta2=0.98,
adam_epsilon=1e-6,
max_grad_norm=1,
num_train_epochs=hyperparams['train-epochs'],
lr_scheduler_type=SchedulerType.LINEAR,
warmup_ratio=hyperparams['decay-lr-at-percentage-of-steps'],
log_level='passive',
logging_dir=args.logdir,
logging_strategy=IntervalStrategy.STEPS,
logging_first_step=True,
logging_steps=1,
save_strategy=IntervalStrategy.EPOCH,
save_total_limit=1,
no_cuda=args.no_cuda,
seed=seed,
local_rank=-1,
dataloader_drop_last=False,
dataloader_num_workers=1,
optim=OptimizerNames.ADAMW_TORCH,
group_by_length=False,
ddp_find_unused_parameters=False,
dataloader_pin_memory=True,
skip_memory_metrics=True
)
# define a function that return the logits/labels without padding entries
def unpad(labels_: torch.Tensor, preds_: torch.Tensor) -> \
Tuple[torch.Tensor, torch.Tensor]:
"""Removes values where the label is -100 and returns both Tensors."""
valid_indices = labels_ != -100
return labels_[valid_indices], preds_[valid_indices]
# define the metrics used (accuracy and F1)
def compute_metrics(pred: EvalPrediction) -> Dict[str, float]:
"""Computes some metrics given the predictions and labels, and returns
them in the dictionary so that they can be digested by the HF
Trainer API."""
labels_ = pred.label_ids.reshape(-1)
preds_ = pred.predictions.reshape(-1)
labels_, preds_ = unpad(labels_, preds_)
acc_ = accuracy_score(labels_, preds_)
f1_ = f1_score(labels_, preds_, average='weighted')
return {'accuracy': acc_, 'f1': f1_}
# train
trainer = CustomMetricsTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
tokenizer=tokenizer,
compute_metrics=compute_metrics,
preprocess_logits_for_metrics=lambda logits, _: logits.argmax(-1)
)
trainer.train()
# get the test metrics
test_out = trainer.predict(test_dataset=test_dataset)
if args.confusion_matrix is not None:
labels = torch.from_numpy(test_out.label_ids)
preds = torch.from_numpy(test_out.predictions)
labels, preds = unpad(labels, preds)
classes = test_dataset.classnames
cm = ConfusionMatrix(num_classes=len(classes))(preds, labels)
plot_confusion_matrix(cm, classes, args.confusion_matrix)
test_loss, acc, f1 = (test_out.metrics['test_loss'],
test_out.metrics['test_accuracy'],
test_out.metrics['test_f1'])
print(f'Test Loss: {test_loss:.6f}\n'
f'Test Accuracy: {acc:.2f}\n'
f'Test weighted F1 score: {f1:.2f}')
test_metrics = (test_loss, acc, f1)
# save plots with losses if specified
if args.plot_savepath is not None:
plot_pos_metrics(args.logdir, args.plot_savepath,
framework='hf', test_metrics=test_metrics)
if __name__ == "__main__":
print()
arg = parse_hf_pos_input()
main(arg)