forked from RubensZimbres/Repo-2016
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Python - Keras Deep Regressor
96 lines (79 loc) · 2.43 KB
/
Python - Keras Deep Regressor
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.optimizers import SGD
from keras.callbacks import LearningRateScheduler,EarlyStopping, ModelCheckpoint
from keras import backend as K
epochs = 2000
learning_rate = 0.01
decay_rate = 5e-6
momentum = 0.9
reg=0.01
sd=[]
class LossHistory(keras.callbacks.Callback):
def on_train_begin(self, logs={}):
self.losses = [1,1]
def on_epoch_end(self, batch, logs={}):
self.losses.append(logs.get('loss'))
sd.append(step_decay(len(self.losses)))
print('learning rate:', step_decay(len(self.losses)))
print('derivative of loss:', 2*np.sqrt((self.losses[-1])))
def my_init(shape, name=None):
value = np.random.random(shape)
return K.variable(value, name=name)
def step_decay(losses):
if float(2*np.sqrt(np.array(history.losses[-1])))<1:
lrate=0.01*1/(1+0.1*len(history.losses))
momentum=0.2
decay_rate=0.0
return lrate
else:
lrate=0.01
return lrate
model = Sequential()
model.add(Dense(6, input_dim=3, init=my_init))
model.add(Activation('tanh'))
model.add(Dropout(0.5))
model.add(Dense(2, init='uniform'))
model.add(Activation('softmax'))
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.97, nesterov=True)
model.compile(loss='categorical_crossentropy',
optimizer=sgd,metrics=['accuracy'])
aa=pd.read_csv('questao1NN.csv',sep=',',header=0)
df=aa[0:1800]
df2=aa[1801:1999]
y=np.array(df[[1]])
y_train=[item for sublist in y for item in sublist]
y_train=pd.get_dummies(y_train)
y_train=np.array(y_train)
y_train=pd.DataFrame(y_train).values
x=np.array(df)
x1=x.T
for i in range(1,14):
x1[i]=np.array([float(i) for i in x1[i]])
x2=[x1[6],x1[7],x1[9]]
x3=np.array(x2).T
X_train=x3
X_train.shape
y2=np.array(df2[[1]])
y_train2=[item for sublist in y2 for item in sublist]
y_train20=pd.get_dummies(y_train2)
y_train2=np.array(y_train20)
y_test=pd.DataFrame(y_train2).values
x0=np.array(df2)
x10=x0.T
x20=[x10[1],x10[2]]
x30=np.array(x20).T
X_test=x30
history=LossHistory()
lrate=LearningRateScheduler(step_decay)
model.fit(X_train, y_train,nb_epoch=20,batch_size=1000,callbacks=[history,lrate])
model.evaluate(X_train, y_train, batch_size=16)
model.predict(X_train, batch_size=32, verbose=0)
b=[float(i) for i in history.losses]
plt.plot(b,color='r')
plt.title("LOSS HISTORY")
plt.show()