forked from RubensZimbres/Repo-2016
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPython - Autoencoder MNIST.py
60 lines (55 loc) · 1.98 KB
/
Python - Autoencoder MNIST.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from keras.layers import Input, Dense
from keras.models import Model
from keras.datasets import mnist
import numpy as np
encoding_dim = 32 # 32 floats -> compression of factor 24.5, assuming the input is 784 floats
input_img = Input(shape=(784,))
encoded = Dense(encoding_dim, activation='relu')(input_img)
decoded = Dense(784, activation='sigmoid')(encoded)
autoencoder = Model(input=input_img, output=decoded)
encoder = Model(input=input_img, output=encoded)
encoded_input = Input(shape=(encoding_dim,))
decoder_layer = autoencoder.layers[-1]
decoder = Model(input=encoded_input, output=decoder_layer(encoded_input))
autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')
(x_train, _), (x_test, _) = mnist.load_data()
x_train = x_train[0:1].astype('float32') / 255.
x_test = x_test[0:1].astype('float32') / 255.
x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))
print(x_train.shape)
print(x_test.shape)
autoencoder.summary()
autoencoder.fit(x_train, x_train,
nb_epoch=40,
batch_size=350,
shuffle=True,
validation_data=(x_test, x_test))
encoded_imgs = encoder.predict(x_test)
decoded_imgs = decoder.predict(encoded_imgs)
import matplotlib.pyplot as plt
n = 1
plt.figure(figsize=(20, 4))
for i in range(n):
# display original
ax = plt.subplot(2, n, i + 1)
plt.imshow(x_test[i].reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
# display reconstruction
ax = plt.subplot(2, n, i + 1 + n)
plt.imshow(decoded_imgs[i].reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.show()
n = 1
plt.figure(figsize=(20, 8))
for i in range(n):
ax = plt.subplot(1, n, i+1)
plt.imshow(encoded_imgs[0].reshape(2,2 * 8).T)
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.show()