-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_condg.py
262 lines (217 loc) · 10.8 KB
/
test_condg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import sys
from deeprobust.graph.data import Dataset
import numpy as np
import random
import time
import argparse
import torch
import torch.nn.functional as F
import os
import datetime
import deeprobust.graph.utils as utils
from models.gcn import GCN
from models.sgc import SGC
from models.sgc_multi import SGC as SGC1
from models.myappnp import APPNP
from models.myappnp1 import APPNP1
from models.mycheby import Cheby
from models.mygraphsage import GraphSage
from models.gat import GAT
import scipy.sparse as sp
from utils_graphsaint import DataGraphSAINT
from utils import *
from gntk_cond import GNTK
import logging
from tensorboardX import SummaryWriter
from sklearn.neighbors import kneighbors_graph
import json
# random seed setting
def main(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
device = torch.device(args.device)
#logging.info('start!')
if args.dataset in ['cora', 'citeseer']:
args.epsilon = 0.05
else:
args.epsilon = 0.01
data_graphsaint = ['flickr', 'reddit', 'ogbn-arxiv']
if args.dataset in data_graphsaint:
data = DataGraphSAINT(args.dataset)
data_full = data.data_full
else:
data_full = get_dataset(args.dataset)
data = Transd2Ind(data_full)
res_val = []
res_test = []
nlayer = 2
for i in range(args.nruns):
best_acc_val, best_acc_test = test(args, data, device, model_type=args.test_model_type, nruns=i)
res_val.append(best_acc_val)
res_test.append(best_acc_test)
res_val = np.array(res_val)
res_test = np.array(res_test)
logging.info('Model:{}, Layer: {}'.format(args.test_model_type, nlayer))
logging.info('TEST: Full Graph Mean Accuracy: {:.6f}, STD: {:.6f}'.format(res_test.mean(), res_test.std()))
logging.info('TEST: Valid Graph Mean Accuracy: {:.6f}, STD: {:.6f}'.format(res_val.mean(), res_val.std()))
return best_acc_val, best_acc_test, args
def test(args, data, device, model_type, nruns):
if args.whole_data != 1:
feat_syn, labels_syn = get_syn_data(args, data, device, model_type)
adj_syn = torch.eye(feat_syn.shape[0]).to(device)
if type(adj_syn) is not torch.Tensor:
feat_syn, adj_syn, labels_syn = utils.to_tensor(feat_syn, adj_syn, labels_syn, device=device)
else:
feat_syn, adj_syn, labels_syn = feat_syn.to(device), adj_syn.to(device), labels_syn.to(device)
if model_type == 'MLP':
adj_syn = adj_syn - adj_syn
model_class = GCN
else:
model_class = eval(model_type)
if utils.is_sparse_tensor(adj_syn):
adj_syn_norm = utils.normalize_adj_tensor(adj_syn, sparse=True)
else:
adj_syn_norm = utils.normalize_adj_tensor(adj_syn)
adj_syn = adj_syn_norm
weight_decay = args.test_wd
lr = args.test_lr_model
else:
logging.info('THIS IS THE ORIGINAL WHOLE DATA...')
features, adj, labels = data.feat_full, data.adj_full, data.labels_full
features, adj, labels = utils.to_tensor(features, adj, labels, device=device)
feat_syn, labels_syn = features, labels
if model_type == 'MLP':
adj = adj - adj
model_class = GCN
else:
model_class = eval(model_type)
if utils.is_sparse_tensor(adj):
adj_syn_norm = utils.normalize_adj_tensor(adj, sparse=True)
else:
adj_syn_norm = utils.normalize_adj_tensor(adj)
adj_syn = adj_syn_norm
weight_decay = 5e-4
lr = 0.01
#dropout = 0.5 if args.dataset in ['reddit'] else args.test_dropout
dropout = args.test_dropout
model = model_class(nfeat=feat_syn.shape[1], nhid=args.test_hidden, dropout=dropout, nlayers=args.test_nlayers,
nclass=data.nclass, device=device).to(device)
logging.info(model)
logging.info('=== training {} model ==='.format(model_type))
if args.test_opt_type=='Adam':
optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=weight_decay)
elif args.test_opt_type=='SGD':
optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.8, weight_decay=weight_decay)
best_acc_val = best_acc_test = best_acc_it = 0
train_iters = args.test_model_iters
for i in range(train_iters):
if i == train_iters // 2 and args.lr_decay == 1:
lr = args.test_lr_model * 0.5
if args.test_opt_type == 'Adam':
optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=weight_decay)
elif args.test_opt_type == 'SGD':
optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.9, weight_decay=weight_decay)
if args.whole_data == 1:
model.train()
optimizer.zero_grad()
_,output_syn = model.forward(feat_syn, adj_syn)
loss_train = F.nll_loss(output_syn[data.idx_train], labels_syn[data.idx_train])
acc_syn = utils.accuracy(output_syn[data.idx_train], labels_syn[data.idx_train])
else:
model.train()
optimizer.zero_grad()
_,output_syn = model.forward(feat_syn, adj_syn)
loss_train = F.nll_loss(output_syn, labels_syn)
acc_syn = utils.accuracy(output_syn, labels_syn)
loss_train.backward()
optimizer.step()
writer.add_scalar('train/loss_val_curve_' + str(nruns), loss_train.item(), i)
writer.add_scalar('train/acc_val_curve_' + str(nruns), acc_syn.item(), i)
if i % 1 == 0:
logging.info('Epoch {}, training loss: {}, training acc: {}'.format(i, loss_train.item(), acc_syn.item()))
model.eval()
labels_test = torch.LongTensor(data.labels_test).to(device)
labels_val = torch.LongTensor(data.labels_val).to(device)
if args.dataset in ['reddit', 'flickr']:
_,output_val = model.predict(data.feat_val, data.adj_val)
loss_val = F.nll_loss(output_val, labels_val)
acc_val = utils.accuracy(output_val, labels_val)
_, output_test = model.predict(data.feat_test, data.adj_test)
loss_test = F.nll_loss(output_test, labels_test)
acc_test = utils.accuracy(output_test, labels_test)
logging.info(
"Validation set results: loss= {:.4f},accuracy= {:.4f}".format(loss_val.item(), acc_val.item()))
logging.info(
"Test full set results with best validation performance: loss= {:.4f}, accuracy= {:.4f}".format(
loss_test.item(),
acc_test.item()))
writer.add_scalar('val/loss_val_curve_' + str(nruns), loss_val.item(), i)
writer.add_scalar('val/acc_val_curve_' + str(nruns), acc_val.item(), i)
writer.add_scalar('test/loss_test_curve_' + str(nruns), loss_test.item(), i)
writer.add_scalar('test/acc_test_curve_' + str(nruns), acc_test.item(), i)
if acc_val.item() > best_acc_val:
best_acc_val = acc_val.item()
best_acc_test = acc_test.item()
best_acc_it = i
else:
# Full graph
_,output = model.predict(data.feat_full, data.adj_full)
loss_val = F.nll_loss(output[data.idx_val], labels_val)
acc_val = utils.accuracy(output[data.idx_val], labels_val)
loss_test = F.nll_loss(output[data.idx_test], labels_test)
acc_test = utils.accuracy(output[data.idx_test], labels_test)
logging.info(
"Validation set results: loss= {:.4f},accuracy= {:.4f}".format(loss_val.item(), acc_val.item()))
logging.info(
"Test full set results with best validation performance: loss= {:.4f}, accuracy= {:.4f}".format(
loss_test.item(),
acc_test.item()))
writer.add_scalar('val/loss_val_curve_' + str(nruns), loss_val.item(), i)
writer.add_scalar('val/acc_val_curve_' + str(nruns), acc_val.item(), i)
writer.add_scalar('test/loss_test_curve_' + str(nruns), loss_test.item(), i)
writer.add_scalar('test/acc_test_curve_' + str(nruns), acc_test.item(), i)
if acc_val.item() > best_acc_val:
best_acc_val = acc_val.item()
best_acc_test = acc_test.item()
best_acc_it = i
logging.info('FINAL BEST ACC TEST: {:.6f} with in {}-iteration'.format(best_acc_test,best_acc_it))
return best_acc_val, best_acc_test
def get_syn_data(args, data, device, model_type=None):
if args.best_ntk_score==1:
feat_syn = torch.load(f'{args.load_path}/feat_{args.dataset}_{args.reduction_rate}_best_ntk_score_{args.tr_seed}.pt',
map_location='cpu')
labels_syn = torch.load(
f'{args.load_path}/label_{args.dataset}_{args.reduction_rate}_best_ntk_score_{args.tr_seed}.pt',
map_location='cpu')
feat_syn = feat_syn.to(device)
labels_syn = labels_syn.to(device)
return feat_syn, labels_syn
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="LastStep:testing on the original dataset.")
parser.add_argument("--config", type=str, default="config.json", help="Path to the config JSON file")
parser.add_argument("--section", type=str, default='runed exps name', help="the experiments needs to run")
args = parser.parse_args()
with open(args.config, "r") as config_file:
config = json.load(config_file)
if args.section in config:
section_config = config[args.section]
for key, value in section_config.items():
setattr(args, key, value)
log_dir = './' + args.save_log + '/Test/{}-model_{}-reduce_{}-{}'.format(args.dataset, args.test_model_type,
str(args.reduction_rate),
datetime.datetime.now().strftime(
"%Y%m%d-%H%M%S-%f"))
if not os.path.exists(log_dir):
os.makedirs(log_dir)
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO, format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(log_dir, 'test.log'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
logging.info('This is the log_dir: {}'.format(log_dir))
writer = SummaryWriter(log_dir + '/tbx_log')
main(args)
logging.info(args)
logging.info('Finish!, Log_dir: {}'.format(log_dir))