diff --git a/faceswap-demo.ipynb b/faceswap-demo.ipynb new file mode 100644 index 000000000..febefbb32 --- /dev/null +++ b/faceswap-demo.ipynb @@ -0,0 +1 @@ +{"cells":[{"metadata":{"_uuid":"8f2839f25d086af736a60e9eeb907d3b93b6e0e5","_cell_guid":"b1076dfc-b9ad-4769-8c92-a6c4dae69d19","trusted":true},"cell_type":"code","source":"# This Python 3 environment comes with many helpful analytics libraries installed\n# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python\n# For example, here's several helpful packages to load\n\nimport numpy as np # linear algebra\nimport pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)\n\n# Input data files are available in the read-only \"../input/\" directory\n# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory\n\nimport os\nfor dirname, _, filenames in os.walk('/kaggle/input'):\n for filename in filenames:\n print(os.path.join(dirname, filename))\n\n# You can write up to 5GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using \"Save & Run All\" \n# You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session","execution_count":null,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"!nvidia-smi","execution_count":null,"outputs":[]},{"metadata":{"_uuid":"d629ff2d2480ee46fbb7e2d37f6b5fab8052498a","_cell_guid":"79c7e3d0-c299-4dcb-8224-4455121ee9b0","trusted":true},"cell_type":"code","source":"!git clone https://github.com/AliaksandrSiarohin/motion-cosegmentation.git","execution_count":null,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"%cd motion-cosegmentation/\n!git clone https://github.com/AliaksandrSiarohin/face-makeup.PyTorch face_parsing","execution_count":null,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"!conda install -y gdown\n!pip install imageio_ffmpeg\n!mkdir weights/\n# download first order weights\nimport gdown\nid='1n2CqYEjM82X7sE40xrZpmnOxF6NekYW0'\nurl = 'https://drive.google.com/uc?id='\noutdir='weights/'\ngdown.download(url+id, outdir, quiet=False)","execution_count":null,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"!python part_swap.py --source_image /kaggle/input/srcimgs/mona.jpg --target_video /kaggle/input/targetvidz/target.mp4 --checkpoint weights/vox-first-order.pth.tar --config config/vox-256-sem-10segments.yaml --supervised --first_order_motion_model --swap_index 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15","execution_count":null,"outputs":[]}],"metadata":{"kernelspec":{"name":"python3","display_name":"Python 3","language":"python"},"language_info":{"name":"python","version":"3.7.6","mimetype":"text/x-python","codemirror_mode":{"name":"ipython","version":3},"pygments_lexer":"ipython3","nbconvert_exporter":"python","file_extension":".py"}},"nbformat":4,"nbformat_minor":4}