-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpaths.py
204 lines (163 loc) · 7.7 KB
/
paths.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os
import os.path as osp
def _get_env_var(name):
if name not in os.environ:
raise EnvironmentError("Required environment variable '{}' is not set".format(name))
return os.environ[name]
class Paths(object):
def __init__(self):
raise ValueError("Static class 'Paths' should be not be initialized")
# ------------------------------------------- TOP LEVEL DIRECTORIES -----------------------------------------------
@classmethod
def configs_dir(cls):
return osp.realpath(osp.join(osp.dirname(__file__), os.pardir, os.pardir, "configs"))
@classmethod
def workspace_dir(cls):
return osp.join(_get_env_var("TARVIS_WORKSPACE_DIR"))
@classmethod
def annotations_dir(cls):
return osp.join(cls.workspace_dir(), "dataset_annotations")
@classmethod
def dataset_images_dir(cls):
return osp.join(cls.workspace_dir(), "dataset_images")
@classmethod
def training_dataset_images_dir(cls):
return osp.join(cls.dataset_images_dir(), "training")
@classmethod
def inference_dataset_images_dir(cls):
return osp.join(cls.dataset_images_dir(), "inference")
@classmethod
def training_annotations_dir(cls):
return osp.join(cls.annotations_dir(), "training")
@classmethod
def inference_annotations_dir(cls):
return osp.join(cls.annotations_dir(), "inference")
@classmethod
def saved_models_dir(cls):
return osp.join(cls.workspace_dir(), "checkpoints")
@classmethod
def pretrained_backbones_dir(cls):
return osp.join(cls.workspace_dir(), "pretrained_backbones")
# --------------------------------------- IMAGE-LEVEL PANOPTIC DATASETS --------------------------------
@classmethod
def panoptic_train_images(cls, dataset_name):
return osp.join(cls.training_dataset_images_dir(), dataset_name)
@classmethod
def panoptic_train_anns(cls, dataset_name):
pan_maps = osp.join(cls.training_annotations_dir(), f"{dataset_name}_panoptic", "pan_maps")
segments_json = osp.join(cls.training_annotations_dir(), f"{dataset_name}_panoptic", "segments.json")
return pan_maps, segments_json
# ------------------------------------------- YOUTUBE-VIS -----------------------------------------------
@classmethod
def youtube_vis_train_images(cls):
return osp.join(cls.training_dataset_images_dir(), "youtube_vis_2021")
@classmethod
def youtube_vis_train_anns(cls):
return osp.join(cls.training_annotations_dir(), "youtube_vis_2021.json")
@classmethod
def youtube_vis_val_paths(cls):
return {
"images_base_dir": osp.join(cls.inference_dataset_images_dir(), "youtube_vis_2021"),
"json_info_path": osp.join(cls.inference_annotations_dir(), "youtube_vis", "valid_2021.json")
}
# ----------------------------------------------- OVIS --------------------------------------------------
@classmethod
def ovis_train_images(cls):
# return osp.join(cls.training_dataset_images_dir(), "ovis")
return osp.join(cls.training_dataset_images_dir(), "ovis")
@classmethod
def ovis_train_anns(cls):
return osp.join(cls.training_annotations_dir(), "ovis.json")
@classmethod
def ovis_val_paths(cls):
return {
"images_base_dir": osp.join(cls.inference_dataset_images_dir(), "ovis"),
"json_info_path": osp.join(cls.inference_annotations_dir(), "ovis", "valid.json")
}
# --------------------------------------------- DAVIS ---------------------------------------------------
@classmethod
def davis_train_images(cls):
return osp.join(cls.training_dataset_images_dir(), "davis")
@classmethod
def davis_train_anns(cls):
return osp.join(cls.training_annotations_dir(), "davis_semisupervised.json")
@classmethod
def davis_val_paths(cls):
return {
"images_base_dir": osp.join(cls.inference_dataset_images_dir(), "davis"),
"annotations_base_dir": osp.join(cls.inference_annotations_dir(), "davis", "Annotations"),
"image_set_file_path": osp.join(cls.inference_annotations_dir(), "davis", "ImageSet_val.txt")
}
@classmethod
def davis_testdev_paths(cls):
return {
"images_base_dir": osp.join(cls.inference_dataset_images_dir(), "davis"),
"annotations_base_dir": osp.join(cls.inference_annotations_dir(), "davis", "Annotations"),
"image_set_file_path": osp.join(cls.inference_annotations_dir(), "davis", "ImageSet_testdev.txt")
}
# --------------------------------------------- BURST ---------------------------------------------------
@classmethod
def burst_train_images(cls):
return osp.join(cls.training_dataset_images_dir(), "burst")
@classmethod
def burst_train_anns(cls):
return osp.join(cls.training_annotations_dir(), "burst.json")
@classmethod
def burst_val_anns(cls):
return {
"images_base_dir": osp.join(cls.inference_dataset_images_dir(), "burst", "val"),
"first_frame_annotations_file": osp.join(cls.inference_annotations_dir(), "burst", "first_frame_annotations_val.json")
}
@classmethod
def burst_test_anns(cls):
return {
"images_base_dir": osp.join(cls.inference_dataset_images_dir(), "burst", "test"),
"first_frame_annotations_file": osp.join(cls.inference_annotations_dir(), "burst", "first_frame_annotations_test.json")
}
# -------------------------------------------- KITTI-STEP -----------------------------------------------
@classmethod
def kitti_step_train_images(cls):
return osp.join(cls.training_dataset_images_dir(), "kitti_step")
@classmethod
def kitti_step_train_anns(cls):
return osp.join(cls.training_annotations_dir(), "kitti_step.json")
@classmethod
def kitti_step_val_paths(cls):
return {
"images_base_dir": osp.join(cls.inference_dataset_images_dir(), "kitti_step_val")
}
# ------------------------------------------ CITYSCAPES-VPS ----------------------------------------------
@classmethod
def cityscapes_vps_train_images(cls):
return osp.join(cls.training_dataset_images_dir(), "cityscapes_vps")
@classmethod
def cityscapes_vps_train_anns(cls):
return osp.join(cls.training_annotations_dir(), "cityscapes_vps.json")
@classmethod
def cityscapes_vps_val_paths(cls):
return {
"images_base_dir": osp.join(cls.inference_dataset_images_dir(), "cityscapes_vps_val"),
"info_file": osp.join(cls.inference_annotations_dir(), "cityscapes_vps", "im_all_info_val_city_vps.json")
}
# ------------------------------------------ VIPSEG -------------------------------------------------------
@classmethod
def vipseg_train_images(cls):
return osp.join(cls.training_dataset_images_dir(), "vipseg")
@classmethod
def vipseg_train_panoptic_masks(cls):
return osp.join(cls.training_annotations_dir(), "vipseg", "panoptic_masks")
@classmethod
def vipseg_train_video_info(cls):
return osp.join(cls.training_annotations_dir(), "vipseg", "video_info.json")
@classmethod
def vipseg_val_paths(cls):
return {
"images_base_dir": osp.join(cls.inference_dataset_images_dir(), "vipseg"),
"panoptic_gt_json_file": osp.join(cls.inference_annotations_dir(), "vipseg", "val.json")
}
@classmethod
def vipseg_test_paths(cls):
return {
"images_base_dir": osp.join(cls.inference_dataset_images_dir(), "vipseg_test"),
"panoptic_gt_json_file": osp.join(cls.inference_annotations_dir(), "vipseg", "test.json")
}