-
Notifications
You must be signed in to change notification settings - Fork 1
/
eval.py
173 lines (152 loc) · 7.11 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
__author__ = "Alexander Frotscher"
__email__ = "[email protected]"
import yaml
from accelerate import Accelerator, DistributedDataParallelKwargs
from scipy.ndimage import generate_binary_structure
from skimage.filters import threshold_yen
from sklearn.metrics import average_precision_score
from diffusion import *
from modules import *
from utils import *
def main():
with open("./conf/eval.yml", "r") as file_object:
conf = yaml.load(file_object, Loader=yaml.SafeLoader)
torch.manual_seed(conf["seed"])
kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
accelerator = Accelerator(kwargs_handlers=[kwargs])
device = accelerator.device
model = UNet().to(device=device)
ckpt = torch.load(conf["model"])
model.load_state_dict(ckpt)
diffusion = Diffusion(
noise_steps=conf["noise_steps"],
img_size=conf["size"],
beta_start=conf["beta_start"],
beta_end=conf["beta_end"],
device=device,
)
dataloader = MRI_Volume(
conf,
hist=False,
shift=(True if "shifts" in conf["dataset_path"] else False),
)
model, dataloader = accelerator.prepare(model, dataloader)
pbar = tqdm(dataloader)
threshold_test = [
round(x, 3)
for x in np.arange(conf["thr_start"], conf["thr_end"], conf["thr_step"])
]
dice_scores = {i: [] for i in threshold_test}
dice_scores_mf = {i: [] for i in threshold_test}
my_auprs = {i: [] for i in ["aupr no median", "aupr"]}
with torch.no_grad():
my_volume = []
my_labels = []
for i, (image, label) in enumerate(pbar):
image = (image * 2) - 1
num_volumes = image.shape[0]
num_slices = image.shape[4]
image = torch.permute(image, (0, 4, 1, 2, 3))
image = image.view(-1, image.shape[2], image.shape[3], image.shape[4])
split = torch.split(image, conf["size_splits"])
dts_list = []
for my_tensor in split:
dts = diffusion.normative_diffusion(
model,
my_tensor,
conf["start"],
conf["stop"],
conf["pyramid"],
conf["discount"],
).to("cpu")
dts_list.append(dts)
dts_list = torch.cat(dts_list, dim=0)
if conf["gmean"] == True:
aggregation = gmean(dts_list, dim=1)
else:
aggregation = torch.mean(dts_list, dim=1)
aggregation = aggregation.view(
num_volumes,
num_slices,
aggregation.shape[1],
aggregation.shape[2],
aggregation.shape[3],
)
aggregation = torch.permute(aggregation, (0, 2, 3, 4, 1))
aggregation = aggregation.to(device)
aggregation, label = accelerator.gather_for_metrics(
(aggregation, label)
)
my_labels.append(label.type(torch.bool).to("cpu"))
my_volume.append(aggregation.to("cpu"))
if accelerator.is_main_process:
my_volume = torch.cat(my_volume, dim=0)
my_labels = torch.cat(my_labels, dim=0)
if conf["max"] == True:
anomaly_map = torch.max(my_volume, dim=1)[0]
else:
anomaly_map = torch.mean(my_volume, dim=1)
anomaly_map_mf = torch.clone(anomaly_map)
anomaly_map_mf = median_filter_3D(
anomaly_map_mf, kernelsize=conf["kernel_size"]
)
my_labels = my_labels.contiguous()
anomaly_map = norm_tensor(anomaly_map)
anomaly_map_mf = norm_tensor(anomaly_map_mf)
anomaly_map = anomaly_map.contiguous()
anomaly_map_mf = anomaly_map_mf.contiguous()
aupr = average_precision_score(my_labels.view(-1), anomaly_map.view(-1))
my_auprs["aupr no median"].extend([aupr])
aupr = average_precision_score(
my_labels.view(-1), anomaly_map_mf.view(-1)
)
my_auprs["aupr"].extend([aupr])
for key in dice_scores:
segmentation = torch.where(anomaly_map > key, 1.0, 0.0)
segmentation = segmentation.type(torch.bool)
segmentation_mf = torch.where(anomaly_map_mf > key, 1.0, 0.0)
segmentation_mf = segmentation_mf.type(torch.bool)
dice_scores[key].extend(
[float(x) for x in dice(segmentation, my_labels)]
)
dice_scores[key] = np.mean(np.asarray(dice_scores[key]))
dice_scores_mf[key].extend(
[float(x) for x in dice(segmentation_mf, my_labels)]
)
dice_scores_mf[key] = np.mean(np.asarray(dice_scores_mf[key]))
yen_segmentation = torch.zeros_like(anomaly_map)
struc = generate_binary_structure(conf["rank"], conf["connectivity"])
for j, volume in enumerate(anomaly_map):
thr = threshold_yen(volume.numpy())
segmentation = torch.where(volume > thr, 1.0, 0.0)
yen_segmentation[j] = segmentation
yen_segmentation = bin_dilation(yen_segmentation, struc)
dice_scores["yen"] = []
dice_scores["yen"].extend(
[float(x) for x in dice(yen_segmentation, my_labels)]
)
dice_scores["yen"] = np.mean(np.asarray(dice_scores["yen"]))
for j, volume in enumerate(anomaly_map_mf):
thr = threshold_yen(volume.numpy())
segmentation = torch.where(volume > thr, 1.0, 0.0)
yen_segmentation[j] = segmentation
yen_segmentation = bin_dilation(yen_segmentation, struc)
dice_scores_mf["yen"] = []
dice_scores_mf["yen"].extend(
[float(x) for x in dice(yen_segmentation, my_labels)]
)
dice_scores_mf["yen"] = np.mean(np.asarray(dice_scores_mf["yen"]))
dice_scores["AUPRC"] = my_auprs["aupr no median"][0]
dice_scores_mf["AUPRC"] = my_auprs["aupr"][0]
df = pd.DataFrame.from_dict(
dice_scores, orient="index", columns=["value"]
)
df.index.name = "thr"
df_mf = pd.DataFrame.from_dict(
dice_scores_mf, orient="index", columns=["value"]
)
df_mf.index.name = "thr"
df.to_csv(conf["output"])
df_mf.to_csv(conf["output_mf"])
if __name__ == "__main__":
main()