-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathultra_optimize_11.py
183 lines (153 loc) · 7.57 KB
/
ultra_optimize_11.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import os
import sys
sys.path.append('..')
sys.path.append('../..')
import argparse
import utils
import random
import itertools
random.seed(10)
from KCluster import *
from student_utils import *
from generateOutput import *
import Google_OR # Source - Google optimization team https://developers.google.com/optimization/routing/vrp
import input_validator
import output_validator
def solve(list_of_locations, list_of_homes, starting_car_location, adjacency_matrix, params=[]):
# return [[0, 3, 63, 12, 92, 53, 29, 95, 29, 53, 96, 86, 63, 22, 43, 26, 67, 90, 45, 66, 45, 90, 67, 26, 43, 22, 64, 8, 31, 41, 31, 8, 64, 0], {63: [57, 30, 23, 61], 22: [21], 0: [79, 18], 3: [72, 40, 44, 39, 89], 67: [33, 71, 67], 43: [19, 43], 45: [45, 49, 73, 20, 32, 48, 81, 93], 90: [90], 26: [26], 66: [66, 36, 97], 8: [17, 8, 83, 91, 68], 31: [31], 41: [41, 38], 12: [12], 92: [92], 53: [53, 55, 13], 96: [96, 99], 86: [86, 10], 29: [29], 95: [28, 95]}]
G, message = adjacency_matrix_to_graph(adjacency_matrix)
shortest_path_info = list(shortest_paths_and_lengths(list_of_locations, adjacency_matrix))
min_a, min_b, min_energy = None, None, float('inf')
all_ns = list(range(2, len(list_of_locations) - 2))
pick_front = True
while len(all_ns) > 0:
if pick_front:
n = all_ns.pop(0)
else:
n = all_ns.pop()
pick_front = not pick_front
print()
print(n)
print()
counter = 0
for subset_homes in list(itertools.combinations(list_of_locations, n)):
subset_cycle = loc_to_go_TSP(list_of_locations, subset_homes, starting_car_location, shortest_path_info)
a, b, energy = dropoffLocToOutput(subset_cycle, shortest_path_info, list_of_homes, list_of_locations)
if energy < min_energy:
print([a, b])
print("Energy = ", energy)
min_a, min_b, min_energy = a, b, energy
counter += 1
if counter == 200:
counter = 0
print("here")
return [min_a, min_b]
"""
Helpers
"""
# Better alg now!!!
def loc_to_go_with_indices(list_of_locations, indices_to_TSP, starting_car_location, shortest_path_info):
starting_idx = list_of_locations.index(starting_car_location)
homes_indices = [starting_idx] + indices_to_TSP
num_homes = len(homes_indices)
homes_int_adj_matrix = []
for _ in range(num_homes):
homes_int_adj_matrix.append([None] * num_homes)
for i in range(num_homes):
home = homes_indices[i]
homes_int_adj_matrix[i][i] = 0
for j in range(i + 1, num_homes):
dist_ij, _ = getShortestDistAndPath(shortest_path_info, i, j)
homes_int_adj_matrix[i][j] = homes_int_adj_matrix[j][i] = dist_ij
raw_TSP_cycle = Google_OR.main_func(homes_int_adj_matrix, 1)
start_in_TSP_idx = raw_TSP_cycle.index(0) # corresponds to starting_idx in homes_indices
actual_TSP_cycle = raw_TSP_cycle[start_in_TSP_idx :] + raw_TSP_cycle[1 : start_in_TSP_idx]
# actual_TSP_cycle should be a cycle start/end in 0, in homes_indices
translate_to_loc_idx = [homes_indices[i] for i in actual_TSP_cycle] # in list_of_locations, start/end in starting_idx
first, second = translate_to_loc_idx[0], translate_to_loc_idx[1]
_, final_homes_only_car_cycle = getShortestDistAndPath(shortest_path_info, first, second)
for i in range(2, len(translate_to_loc_idx)):
prev_loc_idx, cur_loc_idx = translate_to_loc_idx[i-1], translate_to_loc_idx[i]
_, sp_between = getShortestDistAndPath(shortest_path_info, prev_loc_idx, cur_loc_idx)
final_homes_only_car_cycle.extend(sp_between[1 :])
return final_homes_only_car_cycle
def loc_to_go_TSP(list_of_locations, places_to_TSP, starting_car_location, shortest_path_info):
homes_indices = [list_of_locations.index(i) for i in places_to_TSP]
return loc_to_go_with_indices(list_of_locations, homes_indices, starting_car_location, shortest_path_info)
def getShortestDistAndPath(dijkstra_info, i, j):
pair_info = dijkstra_info[i][1]
dist, path = pair_info[0][j], pair_info[1][j]
return [dist, path[:]]
def adj_matrix_to_int(adj_matrix):
int_adj_matrix = []
size = len(adj_matrix)
for i in range(size):
curRow = []
for j in range(size):
dist = adj_matrix[i][j]
if dist == 'x':
curRow.append(10000000000000) # UGHH
else:
curRow.append(int(dist))
int_adj_matrix.append(curRow)
return int_adj_matrix
def shortest_paths_and_lengths(all_locs, adj_matrix):
actual_graph, msg = adjacency_matrix_to_graph(adj_matrix)
dijkstra_result = nx.all_pairs_dijkstra(actual_graph)
return dijkstra_result
"""
Convert solution with path and dropoff_mapping in terms of indices
and write solution output in terms of names to path_to_file + file_number + '.out'
"""
def convertToFile(path, dropoff_mapping, path_to_file, list_locs):
string = ''
for node in path:
string += list_locs[node] + ' '
string = string.strip()
string += '\n'
dropoffNumber = len(dropoff_mapping.keys())
string += str(dropoffNumber) + '\n'
for dropoff in dropoff_mapping.keys():
strDrop = list_locs[dropoff] + ' '
for node in dropoff_mapping[dropoff]:
# print(node)
strDrop += list_locs[node] + ' '
strDrop = strDrop.strip()
strDrop += '\n'
string += strDrop
utils.write_to_file(path_to_file, string)
def solve_from_file(input_file, output_directory, params=[]):
print('Processing', input_file, 'SOLVING')
input_data = utils.read_file(input_file)
num_of_locations, num_houses, list_locations, list_houses, starting_car_location, adjacency_matrix = data_parser(input_data)
car_path, drop_offs = solve(list_locations, list_houses, starting_car_location, adjacency_matrix, params=params)
basename, filename = os.path.split(input_file)
if not os.path.exists(output_directory):
os.makedirs(output_directory)
output_file = utils.input_to_output(input_file, output_directory)
convertToFile(car_path, drop_offs, output_file, list_locations)
output_validator.validate_output(input_file, output_file, params=params)
def solve_all(input_directory, output_directory, params=[]):
input_files = utils.get_files_with_extension(input_directory, 'in')
for input_file in input_files:
solve_from_file(input_file, output_directory, params=params)
if __name__=="__main__":
parser = argparse.ArgumentParser(description='Parsing arguments')
parser.add_argument('--all', action='store_true', help='If specified, the solver is run on all files in the input directory. Else, it is run on just the given input file')
parser.add_argument('input', type=str, help='The path to the input file or directory')
parser.add_argument('output_directory', type=str, nargs='?', default='.', help='The path to the directory where the output should be written')
parser.add_argument('params', nargs=argparse.REMAINDER, help='Extra arguments passed in')
args = parser.parse_args()
output_directory = args.output_directory
if args.all:
input_directory = args.input
# solve_all(input_directory, output_directory, params=args.params)
try:
solve_all(input_directory, output_directory, params=args.params)
except:
print("Error")
os.system("python3 ./outputs/removeProcessed.py")
os.system("python3 ./solver.py --all inputs outputs")
else:
input_file = args.input
solve_from_file(input_file, output_directory, params=args.params)