-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmeta_learning_models.py
executable file
·429 lines (382 loc) · 21.9 KB
/
meta_learning_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
from typing import Optional
import torch
from torch import nn
from torch import optim
from torch.nn import functional as F
from training_utils import get_wd_params, get_grad_norm_module
from logging_utils import Metrics
import numpy as np
class MetaLearningClassifier(nn.Module):
def __init__(self,
device,
learner,
inner_updates_lr,
inner_update_steps,
meta_aggregate_task_data,
meta_reset_class_weights,
inner_total_samples=None,
meta_aggregate_unused_task_data=True,
meta_optim_name='Adam',
meta_lr=1e-3,
meta_optim_kwargs={},
meta_lr_scheduler=None,
meta_lr_scheduler_kwargs={},
meta_reset_random_classes=0,
meta_loss='fomaml',
meta_optim_use_only_inner_losses=False,
meta_inner_losses_coeff=0,
preserve_inner_changes=False,
collect_meta_loss_every=None,
current_task_meta_loss_coeff=None,
all_tasks_meta_loss_coeff=None,
record_learned_classes=False,
meta_weight_decay=None,
keep_indexing_first_step_optim=False,
meta_only_use_task_data=False,
):
# learning_rate_modulator=None): in learner for eval
super(MetaLearningClassifier, self).__init__()
self.meta_only_use_task_data = meta_only_use_task_data
self.idx_b=False
self.keep_indexing_first_step_optim = keep_indexing_first_step_optim
self.device = device
# inner/outer lr & n_inner_updates
self.inner_updates_lr = inner_updates_lr
self.inner_update_steps = inner_update_steps
self.inner_batch_size = 1
if inner_total_samples is None:
self.inner_total_samples = self.inner_update_steps
else: # TODO
assert inner_total_samples >= self.inner_update_steps
self.inner_total_samples = inner_total_samples
if self.inner_update_steps < inner_total_samples:
assert (meta_aggregate_task_data or meta_aggregate_unused_task_data) == True, 'If not reused to aggregate task data, ' \
'extra samples would be wasted'
self.preserve_inner_changes = preserve_inner_changes
self.meta_lr = meta_lr
self.meta_aggregate_task_data = meta_aggregate_task_data
self.meta_aggregate_unused_task_data = meta_aggregate_unused_task_data
self.unused_task_samples = self.inner_total_samples - self.inner_update_steps
self.meta_optim_use_only_inner_losses = meta_optim_use_only_inner_losses
if self.meta_optim_use_only_inner_losses:
print(self.meta_aggregate_task_data)
assert meta_aggregate_task_data == False
assert meta_inner_losses_coeff == 0
assert meta_aggregate_unused_task_data #
self.meta_inner_losses_coeff = meta_inner_losses_coeff
self.meta_reset_class_weights = meta_reset_class_weights
self.meta_reset_random_classes = meta_reset_random_classes
if collect_meta_loss_every == None:
self.collect_meta_loss_every = self.inner_update_steps
else:
assert self.inner_update_steps % collect_meta_loss_every == 0
self.collect_meta_loss_every = collect_meta_loss_every
self.num_classes = 1000
self.record_learned_classes = record_learned_classes
if self.record_learned_classes:
self.learned_classes_vector = torch.zeros([self.num_classes], device=self.device)
else:
self.learned_classes_vector = None
self.learner = learner
meta_learned_parameters = list(self.learner.parameters())
if self.preserve_inner_changes:
all_parameters = self.learner.parameters()
meta_learned_parameters = []
for p in all_parameters:
is_inner = False
for ip in self.learner.inner_params:
if p is ip:
is_inner = True
if not is_inner:
meta_learned_parameters.append(p)
if meta_optim_name == 'Adam':
torch_optim = torch.optim.Adam
else:
raise NotImplementedError
if meta_weight_decay:
wd_params, nwd_params = get_wd_params(self.learner,
relevant_params=meta_learned_parameters)
optim_groups = [
{"params": wd_params, "weight_decay": meta_weight_decay},
{"params": nwd_params, "weight_decay": 0.0},
]
self.meta_optimizer = torch_optim(optim_groups, lr=self.meta_lr, **meta_optim_kwargs)
else:
self.meta_optimizer = torch_optim(meta_learned_parameters,
lr=self.meta_lr, **meta_optim_kwargs)
if meta_lr_scheduler is not None:
if meta_lr_scheduler == 'cos' or meta_lr_scheduler == 'cosine':
assert 'T_max' in meta_lr_scheduler_kwargs
assert 'eta_min' in meta_lr_scheduler_kwargs
self.meta_lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer=self.meta_optimizer, **meta_lr_scheduler_kwargs)
elif meta_lr_scheduler == 'linear':
assert 'start_factor' in meta_lr_scheduler_kwargs
assert 'end_factor' in meta_lr_scheduler_kwargs
assert 'total_iters' in meta_lr_scheduler_kwargs
self.meta_lr_scheduler = torch.optim.lr_scheduler.LinearLR(
optimizer=self.meta_optimizer, **meta_lr_scheduler_kwargs)
else:
raise NotImplementedError
else:
self.meta_lr_scheduler = None
self.trainer_logging_metrics = Metrics()
self.current_task_meta_loss_coeff = current_task_meta_loss_coeff
self.all_tasks_meta_loss_coeff = all_tasks_meta_loss_coeff
if self.current_task_meta_loss_coeff is not None or self.all_tasks_meta_loss_coeff is not None:
self.trainer_logging_metrics.add('all_tasks_meta_loss', 'current_tasks_meta_loss')
if self.current_task_meta_loss_coeff is None:
self.current_task_meta_loss_coeff = 1
if self.all_tasks_meta_loss_coeff is None:
self.all_tasks_meta_loss_coeff = 1
self.meta_loss = meta_loss
self.device = None
self.meta_iteration = 0
def sample_training_data(self, task_iterators, validation_task_iterators,
all_tasks_iterators, total_task_samples,
all_tasks_buffer=None, ):
meta_batch_size = len(all_tasks_iterators)
total_task_iterators = len(task_iterators)
assert total_task_iterators % meta_batch_size == 0
iterators_per_meta_sample = total_task_iterators // meta_batch_size
task_batch_size = task_iterators[0].batch_size
if all_tasks_iterators is not None:
all_tasks_batch_size = all_tasks_iterators[0].batch_size
elif all_tasks_buffer is not None:
assert meta_batch_size == 1
all_tasks_batch_size = all_tasks_buffer.default_input_data_batch_size
else:
raise NotImplementedError
if validation_task_iterators is not None:
validation_task_batch_size = validation_task_iterators[0].batch_size
else:
validation_task_batch_size = 0
meta_batch_all_tasks_indices = all_tasks_batch_size
# for every meta batch size we are adding validation data from iterators_per_meta_sample tasks
meta_batch_current_task_indices = validation_task_batch_size * iterators_per_meta_sample
assert total_task_samples % iterators_per_meta_sample == 0
steps_per_iterator = total_task_samples // iterators_per_meta_sample
assert steps_per_iterator % task_batch_size == 0
meta_batch_inner_data = []
meta_batch_inner_labels = []
meta_batch_all_tasks_data = []
meta_batch_all_tasks_labels = []
for i in range(meta_batch_size):
inner_data = []
inner_labels = []
meta_sample_task_iterators = task_iterators[
i * iterators_per_meta_sample:(i + 1) * iterators_per_meta_sample]
if all_tasks_iterators is not None:
all_tasks_data, all_tasks_labels = next(iter(all_tasks_iterators[i]))
elif all_tasks_buffer is not None:
all_tasks_data, all_tasks_labels = all_tasks_buffer.sample_inputs()
else:
raise NotImplementedError
for j, it in enumerate(meta_sample_task_iterators):
it = iter(it)
for i in range(0, steps_per_iterator, task_batch_size):
data, label = next(it)
inner_data.append(data)
inner_labels.append(label)
if validation_task_iterators is not None:
validation_task_data, validation_task_labels = next(iter(validation_task_iterators[j]))
all_tasks_data = torch.cat([all_tasks_data, validation_task_data], dim=0)
all_tasks_labels = torch.cat([all_tasks_labels, validation_task_labels], dim=0)
inner_data = torch.cat(inner_data, dim=0)
inner_labels = torch.cat(inner_labels, dim=0)
meta_batch_inner_data.append(inner_data)
meta_batch_inner_labels.append(inner_labels)
meta_batch_all_tasks_data.append(all_tasks_data)
meta_batch_all_tasks_labels.append(all_tasks_labels)
meta_batch_inner_data = torch.stack(meta_batch_inner_data, dim=0).to(self.device)
meta_batch_inner_labels = torch.stack(meta_batch_inner_labels, dim=0).to(self.device)
meta_batch_all_tasks_data = torch.stack(meta_batch_all_tasks_data, dim=0).to(self.device)
meta_batch_all_tasks_labels = torch.stack(meta_batch_all_tasks_labels, dim=0).to(self.device)
return (meta_batch_inner_data, meta_batch_inner_labels, meta_batch_all_tasks_data, meta_batch_all_tasks_labels,
meta_batch_all_tasks_indices, meta_batch_current_task_indices)
def inner_update(self, data, labels, inner_params=None, force_fomaml=False):
if force_fomaml:
meta_loss = 'fomaml'
else:
meta_loss = self.meta_loss
inner_params, new_sample_loss, logits = self.learner.inner_update(
data, labels, step_lr=self.inner_updates_lr,
meta_loss=meta_loss, inner_params=inner_params)
return inner_params, new_sample_loss, logits
def loss(self, data, labels, inner_params):
return self.learner.loss(data=data, labels=labels, inner_params=inner_params,
inner_batch_size=self.inner_batch_size)
def meta_step(self, inner_data,
inner_labels,
inner_update_steps,
all_tasks_data, all_tasks_labels,
meta_batch_all_tasks_indices,
meta_batch_current_task_indices,
):
inner_params = None
inner_data_list = torch.split(
inner_data[:inner_update_steps],
split_size_or_sections=self.inner_batch_size,
dim=0)
inner_labels_list = torch.split(
inner_labels[:inner_update_steps],
split_size_or_sections=self.inner_batch_size,
dim=0)
meta_step_losses = []
meta_step_logits = []
step_data_losses = []
latest_step_data_losses = []
step_data_logits = []
latest_step_data_logits = []
for i, (step_data, step_labels) in enumerate(zip(inner_data_list, inner_labels_list)):
inner_params, step_loss, step_logits = self.inner_update(data=step_data,
labels=step_labels,
inner_params=inner_params)
if self.record_learned_classes:
if self.learned_classes_vector[step_labels] == 0:
step_loss = torch.zeros_like(step_loss)
self.learned_classes_vector[step_labels] = 1.0
step_data_losses.append(step_loss)
step_data_logits.append(step_logits)
latest_step_data_logits.append(step_logits)
latest_step_data_losses.append(step_loss)
check_index = i + 1
if self.idx_b:
check_index = i
if check_index % self.collect_meta_loss_every == 0 or ((i == 0) and self.keep_indexing_first_step_optim):
if self.current_task_meta_loss_coeff is not None:
meta_loss_all_tasks_data, meta_loss_current_tasks_data = torch.split(
all_tasks_data, split_size_or_sections=[meta_batch_all_tasks_indices,
meta_batch_current_task_indices],
dim=0)
meta_loss_all_tasks_labels, meta_loss_current_tasks_labels = torch.split(
all_tasks_labels, split_size_or_sections=[meta_batch_all_tasks_indices,
meta_batch_current_task_indices],
dim=0)
meta_loss_all_tasks, logits_all_tasks, _ = self.learner.loss(data=meta_loss_all_tasks_data,
labels=meta_loss_all_tasks_labels,
inner_params=inner_params,
learned_classes=self.learned_classes_vector)
if self.meta_optim_use_only_inner_losses:
assert meta_loss_current_tasks_data.shape[0] == 0
meta_loss_current_tasks, logits_current_tasks = torch.stack(latest_step_data_losses, dim=0).mean(), step_data_logits
else:
meta_loss_current_tasks, logits_current_tasks, _ = self.learner.loss(
data=meta_loss_current_tasks_data, labels=meta_loss_current_tasks_labels,
inner_params=inner_params, learned_classes=self.learned_classes_vector)
self.trainer_logging_metrics.update(all_tasks_meta_loss=meta_loss_all_tasks.item(),
current_tasks_meta_loss=meta_loss_current_tasks.item())
meta_loss = (
self.all_tasks_meta_loss_coeff * meta_loss_all_tasks + self.current_task_meta_loss_coeff * meta_loss_current_tasks)
logits = torch.concat([logits_all_tasks, logits_current_tasks], dim=0)
else:
meta_loss, logits, _ = self.learner.loss(data=all_tasks_data, labels=all_tasks_labels,
inner_params=inner_params,
learned_classes=self.learned_classes_vector)
if self.meta_optim_use_only_inner_losses:
step_data_samples = torch.concat(latest_step_data_logits, dim=0).shape[0]
all_tasks_samples = logits.shape[0]
total_samples = step_data_samples + all_tasks_samples
mean_step_data_loss = torch.stack(latest_step_data_losses, dim=0).mean()
meta_loss = meta_loss * all_tasks_samples/total_samples + mean_step_data_loss * step_data_samples/all_tasks_samples
meta_step_losses.append(meta_loss)
meta_step_logits.append(logits)
latest_step_data_losses, latest_step_data_logits = [], []
return meta_step_losses, meta_step_logits, step_data_losses, step_data_logits, inner_params
def meta_train(self, task_iterators, validation_task_iterators,
all_tasks_iterators, inner_update_steps=None):
if inner_update_steps == None:
inner_update_steps = self.inner_update_steps
meta_batch_size = len(all_tasks_iterators)
(meta_batch_inner_data, meta_batch_inner_labels,
meta_batch_all_tasks_data, meta_batch_all_tasks_labels,
meta_batch_all_tasks_indices, meta_batch_current_task_indices) = (
self.sample_training_data(task_iterators=task_iterators,
all_tasks_iterators=all_tasks_iterators,
validation_task_iterators=validation_task_iterators,
total_task_samples=self.inner_total_samples, )) # self.inner_update_steps, ))
if self.meta_only_use_task_data:
meta_batch_all_tasks_data = meta_batch_inner_data
meta_batch_all_tasks_labels = meta_batch_inner_labels
elif self.meta_aggregate_task_data:
meta_batch_all_tasks_data = torch.cat([meta_batch_all_tasks_data, meta_batch_inner_data], dim=1)
meta_batch_all_tasks_labels = torch.cat([meta_batch_all_tasks_labels, meta_batch_inner_labels], dim=1)
# inner update steps is already the total number of steps.
meta_batch_current_task_indices += self.inner_total_samples
elif self.meta_aggregate_unused_task_data and self.unused_task_samples > 0:
# first dimension is meta_batch_size
meta_batch_inner_data, meta_batch_inner_unused_data = torch.split(
meta_batch_inner_data,
split_size_or_sections=[self.inner_update_steps, self.unused_task_samples],
dim=1)
meta_batch_inner_labels, meta_batch_inner_unused_labels = torch.split(
meta_batch_inner_labels,
split_size_or_sections=[self.inner_update_steps, self.unused_task_samples],
dim=1)
meta_batch_all_tasks_data = torch.cat([meta_batch_all_tasks_data, meta_batch_inner_unused_data], dim=1)
meta_batch_all_tasks_labels = torch.cat([meta_batch_all_tasks_labels, meta_batch_inner_unused_labels], dim=1)
# inner update steps is already the total number of steps.
meta_batch_current_task_indices += self.unused_task_samples
if self.meta_reset_random_classes > 0:
with torch.no_grad():
classes = torch.randint(low=0, high=self.num_classes, size=[self.meta_reset_random_classes])
for label in torch.split(classes, split_size_or_sections=1):
self.learner.reset_class_weights(c=label)
if self.record_learned_classes:
self.learned_classes_vector[label] = 0
if self.meta_reset_class_weights:
with torch.no_grad():
unique_labels = torch.unique(meta_batch_inner_labels, sorted=False)
for label in torch.split(unique_labels, split_size_or_sections=1):
self.learner.reset_class_weights(c=label)
if self.record_learned_classes:
self.learned_classes_vector[label] = 0
meta_batch_losses, meta_batch_logits, meta_batch_step_data_losses = [], [], []
for i in range(meta_batch_size):
inner_data, inner_labels, all_tasks_data, all_tasks_labels = (
meta_batch_inner_data[i], meta_batch_inner_labels[i],
meta_batch_all_tasks_data[i], meta_batch_all_tasks_labels[i])
(meta_step_losses, meta_step_logits, step_data_losses,
step_data_logits, inner_params) = self.meta_step(
inner_data=inner_data,
inner_labels=inner_labels,
inner_update_steps=inner_update_steps,
all_tasks_data=all_tasks_data,
all_tasks_labels=all_tasks_labels,
meta_batch_all_tasks_indices=meta_batch_all_tasks_indices,
meta_batch_current_task_indices=meta_batch_current_task_indices,
)
meta_batch_losses += meta_step_losses
meta_batch_logits += torch.stack(meta_step_logits, dim=0)
meta_batch_step_data_losses += step_data_losses
with torch.no_grad():
meta_batch_logits = torch.stack(meta_batch_logits, dim=0)
classification_accuracy = torch.eq(meta_batch_logits.argmax(dim=-1),
meta_batch_all_tasks_labels.unsqueeze(-2)).to(
dtype=torch.float32).mean().item()
meta_loss = torch.stack(meta_batch_losses, dim=0).mean()
if self.meta_inner_losses_coeff > 0.0: # todo examine, implement pot replacement
average_meta_inner_loss = torch.stack(meta_batch_step_data_losses, dim=0).mean()
meta_loss = meta_loss + self.meta_inner_losses_coeff * average_meta_inner_loss
self.learner.zero_grad()
meta_loss.backward()
self.learner.process_meta_optim_grads()
self.meta_optimizer.step()
if self.preserve_inner_changes:
with torch.no_grad():
self.learner.update_inner_params(inner_params)
self.learner.complete_meta_optim()
self.meta_iteration += 1
return classification_accuracy, meta_loss.item()
def set_device(self, device):
self.to(device=device)
self.device = str(device)
def logging_stats(self, ):
logging_dict = self.learner.logging_stats()
logging_dict.update(self.trainer_logging_metrics.get())
if self.meta_lr_scheduler is not None:
logging_dict['meta_lr'] = float(self.meta_lr_scheduler.get_last_lr()[0])
if self.record_learned_classes:
logging_dict['learned_classes'] = self.learned_classes_vector.sum().item()
self.trainer_logging_metrics.reset()
return logging_dict