-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlearning_networks.py
executable file
·199 lines (170 loc) · 7.93 KB
/
learning_networks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import logging
import matplotlib.pyplot as plt
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from training_utils import original_init
from overridable_layers import OverLayer
from collections import OrderedDict
from logging_utils import Metrics
from training_utils import get_grad_norm_module
import hydra
def run_over_layers(input, layers, over_params=None):
out = input
over_counter = 0
for i, l in enumerate(layers):
if over_params is not None and isinstance(l, OverLayer):
out = l(out, over_params[over_counter:over_counter + l.over_params])
over_counter += l.over_params
else:
out = l(out)
return out
def get_over_params(layers):
params = []
counter = 0
for layer in layers:
print(layer)
if isinstance(layer, OverLayer):
layer_over_params = list(layer.parameters())
assert len(layer_over_params) == layer.over_params
params += layer_over_params
counter += layer.over_params
print(counter)
return params, counter
def check_over_layers(layers):
return any(isinstance(l, OverLayer) for l in layers)
class OriginalLearningNetwork(nn.Module):
def __init__(self, networks, neuromodulation=True, init_fn=original_init,
learning_rate_modulator=None,
log_meta_gradient_every=-1,):
super(OriginalLearningNetwork, self).__init__()
self.rln_layers, self.pln_layers, *other_layers = networks
if neuromodulation:
self.neuromod_layers, *other_layers = other_layers
self.neuromodulation = neuromodulation
self.init_fn = init_fn
self.pln_params = list(self.pln_layers.parameters())
self.rln_params = list(self.rln_layers.parameters())
self.inner_params = []
self.inner_params_sizes = {}
if check_over_layers(self.rln_layers):
rln_over_params, n_rln_over_params = get_over_params(self.rln_layers)
self.inner_params += rln_over_params
self.inner_params_sizes['rln_params'] = n_rln_over_params
if check_over_layers(self.pln_layers):
pln_over_params, n_pln_over_params = get_over_params(self.pln_layers)
self.inner_params += pln_over_params
self.inner_params_sizes['pln_params'] = n_pln_over_params
if init_fn:
self.apply(init_fn)
self.named_inner_params = OrderedDict()
self.inner_params_names = []
for ip in self.inner_params:
for n, p in self.named_parameters():
if ip is p:
self.named_inner_params[n] = p
self.inner_params_names.append(n)
named_inner_params_check = [any([p is nip for k, nip in self.named_inner_params.items()])
for p in self.inner_params]
self.learner_logging_metrics = Metrics()
self.log_meta_gradient_every = log_meta_gradient_every
self.meta_optim_counter = 0
assert all(named_inner_params_check)
self.learning_rate_modulator = learning_rate_modulator
if self.learning_rate_modulator:
self.learning_rate_modulator.add_indexed_parameters(
indexed_parameters=self.named_inner_params)
def training_loss(self, data, labels, inner_params, learned_classes=None,
loss_kwargs={},
**kwargs):
logits = self.__call__(data, inner_params=inner_params)
if learned_classes is not None:
per_sample_loss = F.cross_entropy(logits, labels, reduction='none', **loss_kwargs)
valid = learned_classes[labels] # bs
valid_loss = per_sample_loss * valid
loss = valid_loss.sum() / (valid.sum() + 1e-8)
else:
loss = F.cross_entropy(logits, labels, **loss_kwargs)
return loss, logits, loss
def loss(self, data, labels, inner_params, learned_classes=None,
loss_kwargs={}, **kwargs):
return self.training_loss(data=data, labels=labels,
inner_params=inner_params,
learned_classes=learned_classes,
**loss_kwargs)
def split_inner_params(self, inner_params):
rln_params, pln_params = None, None
rln_size = self.inner_params_sizes.get('rln_params', 0)
if rln_size > 0:
rln_params = inner_params[:rln_size]
pln_size = self.inner_params_sizes.get('pln_params', 0)
if pln_size > 0:
pln_params = inner_params[rln_size:rln_size + pln_size]
return rln_params, pln_params
def forward(self, input, rln_params=None, pln_params=None,
inner_params=None, neuromod_params=None,
return_latents=False):
if inner_params is not None:
rln_params, pln_params = self.split_inner_params(inner_params=inner_params)
rln_out = run_over_layers(input=input, layers=self.rln_layers,
over_params=rln_params)
if self.neuromodulation:
nm_out = run_over_layers(input=input, layers=self.neuromod_layers,
over_params=neuromod_params)
rln_out = rln_out * nm_out
pln_out = run_over_layers(input=rln_out, layers=self.pln_layers,
over_params=pln_params)
if return_latents:
return pln_out, rln_out
else:
return pln_out
def zero_grad(self, params=None):
with torch.no_grad():
if params is None:
for p in self.parameters():
if p.grad is not None:
p.grad.zero_()
else:
for p in params:
if p.grad is not None:
p.grad.zero_()
def inner_update(self, data, labels, step_lr, meta_loss, inner_params=None):
if inner_params is None:
inner_params = [torch.clone(p) for p in self.inner_params]
loss, logits, new_sample_loss = self.training_loss(data=data, labels=labels, inner_params=inner_params)
if meta_loss == 'fomaml':
inner_grads = torch.autograd.grad(loss, inner_params, allow_unused=False)
elif meta_loss == 'maml':
inner_grads = torch.autograd.grad(loss, inner_params, allow_unused=False, create_graph=True)
else:
raise NotImplementedError
if self.learning_rate_modulator:
updated_inner_params = []
for param, param_name, grad in zip(inner_params, self.inner_params_names, inner_grads):
updated_param = param - self.learning_rate_modulator.get_lr(
param_name) * self.inner_updates_lr * grad
updated_inner_params.append(updated_param)
inner_params = updated_inner_params
else:
inner_params = [param - step_lr * grad for param, grad in zip(inner_params, inner_grads)]
return inner_params, new_sample_loss, logits
def reset_class_weights(self, c):
self.init_fn(self.pln_layers[-1], c=c)
def update_inner_params(self, new_inner_params):
for param, target_param in zip(self.inner_params, new_inner_params):
param.data.copy_(target_param)
def logging_stats(self, ):
logging_dict = dict()
logging_dict.update({k: v.item() for k, v in self.learner_logging_metrics.get().items()})
self.learner_logging_metrics.reset()
logging_dict['meta_optim_steps'] = self.meta_optim_counter
if self.learning_rate_modulator:
modulator_state = self.learning_rate_modulator.get_state()
for k, v in modulator_state.items():
logging_dict['modulator_{}'.format(k)] = v.item()
return logging_dict
def process_meta_optim_grads(self,):
self.meta_optim_counter = self.meta_optim_counter + 1
def complete_meta_optim(self, ):
pass