-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathKnap.java
258 lines (208 loc) · 8.61 KB
/
Knap.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import java.lang.StringBuilder;
import java.util.*;
/***
author:@Akshay
*/
class Knap{
static Scanner sc;
private int crossover_count = 0;
private int clone_count = 0;
private int no_items = 0;
private int population_size = 0;
private int maximum_generations = 0;
private int generation_counter = 1;
private double knapsack_capacity = 0;
private double prob_crossover = 0;
private double prob_mutation = 0;
private double total_fitness_of_generation = 0;
private ArrayList<Integer> value = new ArrayList<Integer>();
private ArrayList<Integer> weight = new ArrayList<Integer>();
private ArrayList<Double> fitness = new ArrayList<Double>();
private ArrayList<Double> generation_fitness = new ArrayList<Double>();
private ArrayList<String> population = new ArrayList<String>();
private ArrayList<String> next_gen = new ArrayList<String>();
private ArrayList<String> generation_solution = new ArrayList<String>();
Knap(){
no_items = sc.nextInt();
for(int i = 0; i < no_items; i++) {
System.out.println("Enter the value of item "+(i+1));
value.add(sc.nextInt());
System.out.println("Enter the weigth of item "+(i+1));
weight.add(sc.nextInt());
}
// Capacity of knapsack
System.out.println("Enter the capacity of knapsack");
knapsack_capacity = sc.nextInt();
// Population size
System.out.println("Enter the population size ");
population_size = sc.nextInt();
// Crossover probability
System.out.println("Enter crossover probability");
prob_crossover = sc.nextDouble();
// Mutation probability
System.out.println("Enter mutation probability ");
prob_mutation = sc.nextDouble();
maximum_generations = population_size;
//
this.generatePopulation();
//Fitness
this.evaluateFitness();
System.out.println("\nFitness:");
for(int i = 0; i < this.population_size; i++) {
System.out.println((i + 1) + " - " + this.fitness.get(i));
}
while(maximum_generations>=0){
this.evaluateFitness();
for(int i=0;i<population_size/2;i++){
if(population_size % 2 == 1) {
next_gen.add(generation_solution.get(generation_counter - 1));
}
int gene1=selectGene();
int gene2=selectGene();
crossoverGenes(gene1,gene2);
}
this.evaluateFitness();
for(int i=0;i<population_size;i++){
System.out.println("#"+(i+1)+" "+next_gen.get(i));
population.add(i,next_gen.get(i));
}
System.out.println("\nFitness:");
for(int m = 0; m < this.population_size; m++) {
System.out.println((m + 1) + " - " + this.fitness.get(m));
}
next_gen.clear();
fitness.clear();
System.out.println("Crossover occurred " + this.crossover_count + " times");
System.out.println("Cloning occurred " + this.clone_count + " times");
if(clone_count==0) {
System.out.println("Mutation did not occur\n");
}
else{
System.out.println("Mutation did occur\n");
}
maximum_generations--;
}
}
private int selectGene() {
double rand = Math.random() * total_fitness_of_generation;
for(int i = 0; i < population_size; i++) {
if(rand <= fitness.get(i)) {
return i;
}
rand = rand - fitness.get(i);
}
return 0;
}
private void crossoverGenes(int gene_1, int gene_2) {
String new_gene_1;
String new_gene_2;
double rand_crossover = Math.random();
if(rand_crossover <= prob_crossover) {
// Perform crossover
crossover_count = crossover_count + 1;
Random generator = new Random();
int cross_point = generator.nextInt(no_items) + 1;
new_gene_1 = population.get(gene_1).substring(0, cross_point) + population.get(gene_2).substring(cross_point);
new_gene_2 = population.get(gene_2).substring(0, cross_point) + population.get(gene_1).substring(cross_point);
next_gen.add(new_gene_1);
next_gen.add(new_gene_2);
}
else {
clone_count = clone_count + 1;
next_gen.add(population.get(gene_1));
next_gen.add(population.get(gene_2));
}
mutateGene();
}
private void mutateGene() {
double rand_mutation = Math.random();
if(rand_mutation <= prob_mutation) {
String mut_gene;
String new_mut_gene;
Random generator = new Random();
int mut_point = 0;
double which_gene = Math.random() * 1;
// Mutate gene
if(which_gene <= 0.5) {
mut_gene = next_gen.get(next_gen.size() - 1);
mut_point = generator.nextInt(no_items);
if(mut_gene.substring(mut_point, mut_point + 1).equals("1")) {
new_mut_gene = mut_gene.substring(0, mut_point) + "0" + mut_gene.substring(mut_point+1);
next_gen.set(next_gen.size() - 1, new_mut_gene);
}
if(mut_gene.substring(mut_point, mut_point + 1).equals("0")) {
new_mut_gene = mut_gene.substring(0, mut_point) + "1" + mut_gene.substring(mut_point+1);
next_gen.set(next_gen.size() - 1, new_mut_gene);
}
}
if(which_gene >0.5) {
mut_gene = next_gen.get(next_gen.size() - 2);
mut_point = generator.nextInt(no_items);
if(mut_gene.substring(mut_point, mut_point + 1).equals("1")) {
new_mut_gene = mut_gene.substring(0, mut_point) + "0" + mut_gene.substring(mut_point+1);
next_gen.set(next_gen.size() - 1, new_mut_gene);
}
if(mut_gene.substring(mut_point, mut_point + 1).equals("0")) {
new_mut_gene = mut_gene.substring(0, mut_point) + "1" + mut_gene.substring(mut_point+1);
next_gen.set(next_gen.size() - 2, new_mut_gene);
}
}
}
}
void evaluateFitness(){
total_fitness_of_generation = 0;
double fitest = 0;
int fitest_index=0;
for(int j = 0; j < population_size; j++) {
double total_weight = 0;
double total_value = 0;
double fitness_value = 0;
double diff = 0;
char c = '1';
for(int i = 0; i < no_items; i++) {
c = population.get(j).charAt(i);
//chromosome value 1
if(c == '1') {
total_weight = total_weight + weight.get(i);
total_value = total_value + value.get(i);
}
}
diff = knapsack_capacity - total_weight;
if(diff >= 0) {
fitness_value = total_value;
}
fitness.add(fitness_value);
if(fitness_value>fitest){
fitest=fitness_value;
fitest_index=j;
}
total_fitness_of_generation = total_fitness_of_generation + fitness_value;
}
System.out.println("Total Generation Fitness "+total_fitness_of_generation);
System.out.print("The fittest chromosome of this generation is "+population.get(fitest_index));
System.out.println(" And its fitness is "+fitness.get(fitest_index));
generation_solution.add(population.get(fitest_index));
}
void generatePopulation(){
System.out.println("Population:");
for(int i = 0; i < population_size; i++) {
String gene = "";
char c;
for(int j = 0; j < no_items; j++) {
if(Math.random() > 0.5) {
gene+="1";
}
else{
gene+="0";
}
}
System.out.println("#"+(i+1)+" "+gene);
population.add(gene);
}
}
public static void main(String args[]){
sc=new Scanner(System.in);
System.out.println("Enter no of items");
Knap k=new Knap();
}
}