-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcurriculum_approaches.py
431 lines (329 loc) · 23.5 KB
/
curriculum_approaches.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
import sys
import os
import torch
import gym
import time
import pickle
import argparse
import operator
import numpy as np
from cmaes import CMA
from matplotlib import pyplot as plt
from numpy.random import default_rng
from gym.utils import seeding
from moving_target_env import MovingTarget
import torch.nn as nn
from stable_baselines3.common.env_checker import check_env
from callbacks import EvalCallback, StopTrainingOnRewardThreshold, StopTrainingOnNoRemarkableImprovement, StopTrainingOnNoModelImprovement
from stable_baselines3 import A2C, PPO, DQN, SAC, DDPG, TD3
from stable_baselines3.common.vec_env import DummyVecEnv, SubprocVecEnv, VecMonitor, VecNormalize
from env_util import make_vec_env
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common import results_plotter
from stable_baselines3.common.results_plotter import ts2xy
from stable_baselines3.common.monitor import load_results, Monitor
from stable_baselines3.common.torch_layers import BaseFeaturesExtractor
level_map_ranges = {"level1": 20.0, "level2": 30.0, "level3": 60.0, "level4": 60.0, "level5":90.0}
def create_init_pos_angles(map_lim: int, N_iter: int, seed:int, folder_postfix: str):
np.random.seed(seed)
agent_init_pos = np.random.uniform(low=-map_lim, high=map_lim, size=(N_iter,2))
enemy_init_pos = np.random.uniform(low=-map_lim, high=map_lim, size=(N_iter,2))
angle_init_list = np.random.uniform(low=-np.pi, high=np.pi, size=(N_iter,2))
with open(folder_postfix + "_init_lists.pickle", 'wb') as handle:
pickle.dump([agent_init_pos, enemy_init_pos, angle_init_list], handle, protocol=pickle.HIGHEST_PROTOCOL)
def create_init_grids_angles(map_lim: int, grid_range: int, N_iter: int, seed:int, folder_postfix: str):
map_grid_list = []
N_grids = 2*map_lim // grid_range
for row in range(N_grids):
for col in range(N_grids):
map_grid_list.append([-map_lim + (row+0.5)*grid_range,
-map_lim + (col+0.5)*grid_range])
# map_grid_list.append([-map_lim + row*grid_range, -map_lim + (row+1)*grid_range,
# -map_lim + col*grid_range, -map_lim + (col+1)*grid_range])
rng = default_rng(seed)
pos_init_list = []
for i in range(N_iter):
pos_init_list.append(list(rng.choice(N_grids**2, size=(2,), replace=False)))
angle_init_list = np.random.uniform(low=-np.pi, high=np.pi, size=(N_iter,2))
with open(folder_postfix + "_init_lists.pickle", 'wb') as handle:
pickle.dump([map_grid_list, pos_init_list, angle_init_list], handle, protocol=pickle.HIGHEST_PROTOCOL)
def level_train(train_timesteps:int, algorithm, n_procs:int, init_list: list, N_eval_freq:int, folder_postfix: str, output_folder: str, seed:int, visualize: bool):
deterministic = True
N_eval_episodes = 10
results_list = []
agent_target = [-45, -45]
enemy_target = [45, 45]
angle_target = [-np.pi/2, np.pi/2]
N_eval_freq = N_eval_freq // n_procs
model_dir = output_folder + "/saved_models"
cnt = 0
for init in init_list:
agent_init = init[0:2]
enemy_init = init[2:4]
angle_init = init[4:]
print ("Agent init location: ", agent_init)
print ("Enemy init location: ", enemy_init)
print ("Angle init: ", angle_init)
current_folder = output_folder + "/" + folder_postfix + "_index_" + str(cnt)
if not os.path.exists(current_folder):
os.makedirs(current_folder)
train_env = make_vec_env(env_id=MovingTarget, n_envs=n_procs, monitor_dir=current_folder, env_kwargs=dict(agent_init=agent_init, opponent_init=enemy_init, angle_init=angle_init ,seed=seed, visualization=visualize), vec_env_cls=SubprocVecEnv)
# eval_env = make_vec_env(env_id=MovingTarget, n_envs=n_procs, env_kwargs=dict(agent_init=agent_init, opponent_init=enemy_init, angle_init=angle_init ,seed=seed), vec_env_cls=SubprocVecEnv)
target_env = make_vec_env(env_id=MovingTarget, n_envs=n_procs, env_kwargs=dict(agent_init=agent_target, opponent_init=enemy_target, angle_init=angle_target ,seed=seed), vec_env_cls=SubprocVecEnv)
train_env.reset()
# eval_env.reset()
model = algorithm('MlpPolicy', train_env, tensorboard_log="./" + current_folder + "_tensorboard/")
if cnt > 0:
previous_level = folder_postfix + "_index_" + str(cnt - 1)
model = algorithm.load(path=model_dir + "/" + previous_level + "/best_model", env=train_env, verbose=0, only_weights = False) # + "/best_model
model.tensorboard_log ="./" + current_folder + "_tensorboard/"
model.set_env(train_env)
stop_callback = StopTrainingOnNoModelImprovement(max_no_improvement_evals = 150, verbose = 1)
callback = EvalCallback(eval_env=target_env, callback_after_eval=stop_callback, n_eval_episodes = N_eval_episodes, eval_freq = N_eval_freq, log_path = current_folder +"_log",
best_model_save_path = model_dir + "/" + folder_postfix + "_index_" + str(cnt), deterministic=deterministic, verbose=1)
start = time.time()
model.learn(total_timesteps=train_timesteps, tb_log_name = folder_postfix + "_index_" + str(cnt), callback=callback)
# model.save(model_dir + "/last_model_" + level)
elapsed_time = time.time() - start
print (f"Elapsed time: {elapsed_time:.5} s.")
train_env.close()
# Load the model
# model = model.load(path=model_dir + "/" + folder_postfix + "_index_" + str(cnt) + "/best_model", verbose=1, only_weights = False) # + "/best_model"
# eval_env.reset()
# episode_rewards, episode_lengths = evaluate_policy(model, eval_env, n_eval_episodes=N_eval_episodes, render=False, deterministic=deterministic, return_episode_rewards=True, warn=True)
# mean_reward_current = np.mean(episode_rewards)
# std_reward_current = np.std(episode_rewards)
# print (f"Mean reward in current env: {mean_reward_current:.4f} Std reward in current env: {std_reward_current:.4f}")
model = model.load(path=model_dir + "/" + folder_postfix + "_index_" + str(cnt) + "/best_model", verbose=1, only_weights = False) # + "/best_model"
target_env.reset()
episode_rewards, episode_lengths = evaluate_policy(model, target_env, n_eval_episodes=N_eval_episodes, render=False, deterministic=deterministic, return_episode_rewards=True, warn=True)
mean_reward_target = np.mean(episode_rewards)
std_reward_target = np.std(episode_rewards)
print (f"Mean reward in target env: {mean_reward_target:.4f} Std reward in target env: {std_reward_target:.4f} \n")
reward_list = [0, mean_reward_target]
results_list.append(reward_list)
cnt += 1
# eval_env.close()
target_env.close()
with open(folder_postfix + "_results.pickle", 'wb') as handle:
pickle.dump(results_list, handle, protocol=pickle.HIGHEST_PROTOCOL)
def cma_train(train_timesteps:int, algorithm, n_procs:int, map_lim: int, N_eval_freq:int, N_population: int, folder_postfix: str, output_folder: str, seed:int, visualize: bool):
deterministic = True
N_eval_episodes = 10
N_iteration = 20
N_generation = 20
agent_target = [-45, -45]
enemy_target = [45, 45]
angle_target = [-np.pi/2, np.pi/2]
N_eval_freq = N_eval_freq // n_procs
# enemy_init = [10, 10]
# angle_init = [np.pi/2, np.pi/2]
for iteration in range(N_iteration): # How many times this algorithm will work
start = time.time()
bounds = np.array([[-map_lim, map_lim], [-map_lim, map_lim], [-map_lim, map_lim], [-map_lim, map_lim], [-np.pi, np.pi], [-np.pi, np.pi]])
# bounds = np.array([[-map_lim, map_lim], [-map_lim, map_lim]])
lower_bounds, upper_bounds = bounds[:, 0], bounds[:, 1]
mean = lower_bounds + (np.random.rand(6) * (upper_bounds - lower_bounds))
sigma = 1.0 #upper_bounds / 4.0
optimizer = CMA(mean=mean, sigma=sigma, bounds=bounds, population_size=N_population, seed=seed)
print (f"Iteration: {iteration} - CMA Train \n")
best_reward_list = []
best_init_list = []
best_pop_index_list = []
for generation in range(N_generation):
solutions = []
reward_dict = dict()
init_dict = dict()
current_folder = output_folder + "/" + folder_postfix + "_index_" + str(generation)
if not os.path.exists(current_folder):
os.makedirs(current_folder)
print ("Generation: ", generation)
for pop_ind in range(optimizer.population_size):
start = time.time()
x = optimizer.ask()
agent_init = [x[0], x[1]]
enemy_init = [x[2], x[3]]
angle_init = [x[4], x[5]]
print ("Agent init location: ", agent_init)
print ("Enemy init location: ", enemy_init)
print ("Angle init location: ", angle_init)
train_env = make_vec_env(env_id=MovingTarget, n_envs=n_procs, monitor_dir=current_folder, env_kwargs=dict(agent_init=agent_init, opponent_init=enemy_init, angle_init=angle_init, seed=seed, visualization=visualize), vec_env_cls=SubprocVecEnv)
eval_env = make_vec_env(env_id=MovingTarget, n_envs=n_procs, env_kwargs=dict(agent_init=agent_init, opponent_init=enemy_init, angle_init=angle_init, seed=seed), vec_env_cls=SubprocVecEnv)
target_env = make_vec_env(env_id=MovingTarget, n_envs=2, env_kwargs=dict(agent_init=agent_target, opponent_init=enemy_target, angle_init=angle_target), vec_env_cls=SubprocVecEnv)
train_env.reset()
eval_env.reset()
if generation > 0:
model = algorithm.load(path=output_folder + "/saved_models/" + folder_postfix + "_index_" + str(generation - 1) + "_best" + "/best_model", verbose=0, only_weights = False) # + "/best_model"
model.tensorboard_log ="./" + current_folder + "_tensorboard/"
model.set_env(train_env)
print ("Best model in gen #", (generation - 1), " is uploaded!")
else:
model = algorithm('MlpPolicy', train_env, tensorboard_log="./" + current_folder + "_tensorboard/")
stop_callback = StopTrainingOnNoRemarkableImprovement(max_no_improvement_evals = 100, check_percentage=0.9, verbose = 1)
callback = EvalCallback(eval_env=eval_env, callback_after_eval=stop_callback, n_eval_episodes = N_eval_episodes, eval_freq = N_eval_freq, log_path = current_folder +"_log",
best_model_save_path = output_folder + "/saved_models/" + folder_postfix + "_index_" + str(generation) + "_pop_" + str(pop_ind), deterministic=deterministic, verbose=1)
model.learn(total_timesteps=train_timesteps, tb_log_name = folder_postfix + "_index_" + str(generation) + "_pop_" + str(pop_ind), callback=callback)
elapsed_time = time.time() - start
print (f"Elapsed time: {elapsed_time:.5} s.")
train_env.close()
# Load the model
model = model.load(path=output_folder + "/saved_models/" + folder_postfix + "_index_" + str(generation) + "_pop_" + str(pop_ind) + "/best_model", verbose=1, only_weights = False) # + "/best_model"
eval_env.reset()
episode_rewards, episode_lengths = evaluate_policy(model, eval_env, n_eval_episodes=N_eval_episodes, render=False, deterministic=deterministic, return_episode_rewards=True, warn=True)
mean_reward_current = np.mean(episode_rewards)
std_reward_current = np.std(episode_rewards)
print (f"Mean reward in current env: {mean_reward_current:.4f} Std reward in current env: {std_reward_current:.4f}")
target_env.reset()
episode_rewards, episode_lengths = evaluate_policy(model, target_env, n_eval_episodes=100, render=False, deterministic=deterministic, return_episode_rewards=True, warn=True)
mean_reward_target = np.mean(episode_rewards)
std_reward_target = np.std(episode_rewards)
print (f"Mean reward in target env: {mean_reward_target:.4f} Std reward in target env: {std_reward_target:.4f} ")
init_list = [agent_init[0], agent_init[1], enemy_init[0], enemy_init[1], angle_init[0], angle_init[1]]
eval_env.close()
target_env.close()
reward_dict[pop_ind] = mean_reward_target
init_dict[pop_ind] = init_list
current_cost = (mean_reward_target - 100) ** 2
solutions.append((x, current_cost))
print(f"#{generation} Reward: {mean_reward_target} (x1={x[0]}, x2 = {x[1]}, x3={x[2]}, x4 = {x[3]}, x5={x[4]}, x6 = {x[5]}) \n")
# print(f"#{generation} Reward: {mean_reward_target} (x1={x[0]}, x2 = {x[1]}) ")
optimizer.tell(solutions)
reward_sorted = sorted(reward_dict.items(), key=operator.itemgetter(1), reverse=True)
best_index = reward_sorted[0][0]
best_reward_list.append(reward_sorted[0][1])
best_init_list.append(init_dict[best_index])
best_pop_index_list.append(best_index)
model = model.load(path=output_folder + "/saved_models/" + folder_postfix + "_index_" + str(generation) + "_pop_" + str(best_index) + "/best_model", verbose=1, only_weights = False) # + "/best_model"
model.save(path=output_folder + "/saved_models/" + folder_postfix + "_index_" + str(generation) + "_best/best_model")
with open(folder_postfix + "_curriculum_iter_" + str(iteration) + ".pickle", 'wb') as handle:
pickle.dump([best_reward_list, best_init_list, best_pop_index_list], handle, protocol=pickle.HIGHEST_PROTOCOL)
if optimizer.should_stop():
# popsize multiplied by 2 (or 3) before each restart.
# popsize = optimizer.population_size * 2
mean = lower_bounds + (np.random.rand(6) * (upper_bounds - lower_bounds))
optimizer = CMA(mean=mean, sigma=sigma, population_size=N_population)
print(f"Restart CMA-ES with popsize={N_population}")
elapsed_time = time.time() - start
print (f"Iteration: {iteration} Elapsed time: {elapsed_time:.5} s.")
def random_train(train_timesteps:int, algorithm, n_procs:int, map_lim: int, grid_range: int, N_eval_freq:int, N_iter: int, folder_postfix: str, output_folder: str, seed:int, visualize: bool):
deterministic = True
N_eval_episodes = 10
results_list = []
agent_target = [-45, -45]
enemy_target = [45, 45]
angle_target = [-np.pi/2, np.pi/2]
N_eval_freq = N_eval_freq // n_procs
model_dir = output_folder + "/saved_models"
create_init_pos_angles(map_lim, N_iter, seed, folder_postfix)
with open(folder_postfix + "_init_lists.pickle", 'rb') as handle:
agent_init_pos, enemy_init_pos, angle_init_list = pickle.load(handle)
cnt = 0
for agent_init, enemy_init, angle_init in zip(agent_init_pos,enemy_init_pos,angle_init_list):
print ("Agent init location: ", agent_init)
print ("Enemy init location: ", enemy_init)
current_folder = output_folder + "/" + folder_postfix + "_index_" + str(cnt)
if not os.path.exists(current_folder):
os.makedirs(current_folder)
train_env = make_vec_env(env_id=MovingTarget, n_envs=n_procs, monitor_dir=current_folder, env_kwargs=dict(agent_init=agent_init, opponent_init=enemy_init, angle_init=angle_init ,seed=seed, visualization=visualize), vec_env_cls=SubprocVecEnv)
eval_env = make_vec_env(env_id=MovingTarget, n_envs=n_procs, env_kwargs=dict(agent_init=agent_init, opponent_init=enemy_init, angle_init=angle_init ,seed=seed), vec_env_cls=SubprocVecEnv)
target_env = make_vec_env(env_id=MovingTarget, n_envs=n_procs, env_kwargs=dict(agent_init=agent_target, opponent_init=enemy_target, angle_init=angle_target ,seed=seed), vec_env_cls=SubprocVecEnv)
train_env.reset()
eval_env.reset()
model = algorithm('MlpPolicy', train_env, tensorboard_log="./" + current_folder + "_tensorboard/")
stop_callback = StopTrainingOnNoRemarkableImprovement(max_no_improvement_evals = 100, check_percentage=0.9, verbose = 1)
callback = EvalCallback(eval_env=eval_env, callback_after_eval=stop_callback, n_eval_episodes = N_eval_episodes, eval_freq = N_eval_freq, log_path = current_folder +"_log",
best_model_save_path = model_dir + "/" + folder_postfix + "_index_" + str(cnt), deterministic=deterministic, verbose=1)
start = time.time()
model.learn(total_timesteps=train_timesteps, tb_log_name = folder_postfix + "_index_" + str(cnt), callback=callback)
# model.save(model_dir + "/last_model_" + level)
elapsed_time = time.time() - start
print (f"Elapsed time: {elapsed_time:.5} s.")
train_env.close()
# Load the model
model = model.load(path=model_dir + "/" + folder_postfix + "_index_" + str(cnt) + "/best_model", verbose=1, only_weights = False) # + "/best_model"
eval_env.reset()
episode_rewards, episode_lengths = evaluate_policy(model, eval_env, n_eval_episodes=N_eval_episodes, render=False, deterministic=deterministic, return_episode_rewards=True, warn=True)
mean_reward_current = np.mean(episode_rewards)
std_reward_current = np.std(episode_rewards)
print (f"Mean reward in current env: {mean_reward_current:.4f} Std reward in current env: {std_reward_current:.4f}")
target_env.reset()
episode_rewards, episode_lengths = evaluate_policy(model, target_env, n_eval_episodes=N_eval_episodes, render=False, deterministic=deterministic, return_episode_rewards=True, warn=True)
mean_reward_target = np.mean(episode_rewards)
std_reward_target = np.std(episode_rewards)
print (f"Mean reward in target env: {mean_reward_target:.4f} Std reward in target env: {std_reward_target:.4f} \n")
init_list = [agent_init[0], agent_init[1], enemy_init[0], enemy_init[1], angle_init[0], angle_init[1]]
reward_list = [mean_reward_current, mean_reward_target]
result = "index: " + str(cnt) + ", inits: " + str(init_list) + ", rewards: " + str(reward_list)
results_list.append(result)
cnt += 1
eval_env.close()
target_env.close()
with open(folder_postfix + "_results.pickle", 'wb') as handle:
pickle.dump(results_list, handle, protocol=pickle.HIGHEST_PROTOCOL)
def curriculum_train(train_timesteps: int, algorithm, level_list: list, level_time_coef_list: dict, n_procs: int, folder_postfix: str, output_folder: str, load_folder: str, N_eval:int, seed:int, visualize: bool):
# activation_list = [nn.Tanh]
# net_list = [[64, 64]]
# policy_kwargs = dict(net_arch=net_list[0], activation_fn=activation_list[0])
model_dir = output_folder + "/saved_models"
print ("\n Curriculum Approach")
prev_curriculum = ""
for curriculum in level_list:
current_range = level_map_ranges[curriculum] / 2.0
agent_init_loc = [-current_range - 5.0, -current_range, -current_range - 5.0, -current_range]
enemy_init_loc = [current_range, current_range + 5.0, current_range, current_range + 5.0]
print (f"\nCurriculum Level: {curriculum}")
level = folder_postfix + "_" + curriculum
current_folder = output_folder + "/" + level
if not os.path.exists(current_folder):
os.makedirs(current_folder)
train_env = make_vec_env(env_id=MovingTarget, n_envs=n_procs, monitor_dir=current_folder, env_kwargs=dict(agent_init_range=agent_init_loc, opponent_init_range=enemy_init_loc, visualization=visualize), vec_env_cls=SubprocVecEnv)
eval_env = make_vec_env(env_id=MovingTarget, n_envs=n_procs, env_kwargs=dict(agent_init_range=agent_init_loc, opponent_init_range=enemy_init_loc), vec_env_cls=SubprocVecEnv)
# train_env = Monitor(train_env, current_folder + "/monitor.csv")
# train_env = VecNormalize(train_env, norm_obs= False, norm_reward=True, clip_reward = max_possible_reward)
train_env.reset()
# if os.path.exists(model_dir + "/" + load_folder):
# model = current_model.load(model_dir + "/" + load_folder + "/best_model", verbose=1)
# else:
model = algorithm('MlpPolicy', train_env, tensorboard_log="./" + current_folder + "_tensorboard/")
current_train_timesteps = train_timesteps * level_time_coef_list[curriculum]
if curriculum != level_list[0]:
previous_level = folder_postfix + "_" + prev_curriculum
model = algorithm.load(path=model_dir + "/" + previous_level + "/best_model", env=train_env, verbose=0, only_weights = False) # + "/best_model
model.tensorboard_log ="./" + current_folder + "_tensorboard/"
model.set_env(train_env)
callback = EvalCallback(eval_env=eval_env, eval_freq = N_eval_freq, log_path = current_folder +"_log",
best_model_save_path = model_dir + "/" + level, deterministic=True, verbose=1)
start = time.time()
model.learn(total_timesteps=current_train_timesteps, tb_log_name= level, callback=callback)
# model.save(model_dir + "/last_model_" + level)
elapsed_time = time.time() - start
print (f"Elapsed time: {elapsed_time:.5} s.")
prev_curriculum = curriculum
train_env.close()
def noncurriculum_train(train_timesteps: int, algorithm, level_list: list, n_procs: int, folder_postfix: str, output_folder: str, load_folder: str, N_eval_freq:int, seed:int, visualize: bool):
model_dir = output_folder + "/saved_models"
print ("\n Non-Curriculum Approach")
curriculum = level_list[-1]
print (f"\nCurriculum Level: {curriculum}")
level_folder = folder_postfix + "_" + curriculum
current_folder = output_folder + "/" + level_folder
if not os.path.exists(current_folder):
os.makedirs(current_folder)
current_range = level_map_ranges[curriculum] / 2.0
agent_init_loc = [-current_range - 5.0, -current_range, -current_range - 5.0, -current_range]
enemy_init_loc = [current_range, current_range + 5.0, current_range, current_range + 5.0]
train_env = make_vec_env(env_id=MovingTarget, n_envs=n_procs, monitor_dir=current_folder, env_kwargs=dict(agent_init_range=agent_init_loc, opponent_init_range=enemy_init_loc, visualization=visualize), vec_env_cls=SubprocVecEnv)
eval_env = make_vec_env(env_id=MovingTarget, n_envs=n_procs, env_kwargs=dict(agent_init_range=agent_init_loc, opponent_init_range=enemy_init_loc), vec_env_cls=SubprocVecEnv)
train_env.reset()
# if os.path.exists(model_dir + "/" + load_folder):
# model = current_model.load(model_dir + "/" + load_folder + "/best_model", verbose=1)
# else:
model = algorithm('MlpPolicy', train_env, tensorboard_log="./" + current_folder + "_tensorboard/")
callback = EvalCallback(eval_env=eval_env, eval_freq = N_eval_freq, log_path = current_folder +"_log",
best_model_save_path = model_dir + "/" + level_folder, deterministic=True, verbose=1)
start = time.time()
model.learn(total_timesteps=train_timesteps, tb_log_name= level_folder, callback=callback)
# model.save(model_dir + "/last_model_" + level_folder)
elapsed_time = time.time() - start
print (f"Elapsed time: {elapsed_time:.5}")
train_env.close()