-
Notifications
You must be signed in to change notification settings - Fork 1
/
MazeSolver.ino
587 lines (455 loc) · 18.3 KB
/
MazeSolver.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
//Definitions:
#define leftMotors_IN1 2
#define leftMotors_IN2 10
#define leftMotors_IN3 12
#define leftMotors_IN4 13
#define rightMotors_IN1 A8
#define rightMotors_IN2 7
#define rightMotors_IN3 8
#define rightMotors_IN4 9
#define leftMotors_ENA 5
#define leftMotors_ENB 6
#define rightMotors_ENA 3
#define rightMotors_ENB 4
#define spikeSpeed 254
#define spikeDelay 100
#define leftMost_sensor A0
#define left_sensor A1
#define center_sensor A2
#define right_sensor A3
#define rightMost_sensor A4
//--------------------------------------------------------------------------------------------------------------------------------------------------------
//Variables:
//Motor Speeds
int forwardSpeeds[4] = {90, 90, 120, 160};
//int turnLeftSpeeds[4] = {-140, -140, 140, 140};
int turnLeftSpeeds[4] = {-160, -160, 160, 160};
int turnRightSpeeds[4] = {110, 110, -150, -150};
int turnAroundSpeeds[4] = {-150, -150, 180, 180};
int maxSpeed = 254;
// IR Sensor readings
int sensors[5];
// PID Proportionality Parameters
float Kp = 100;
float Ki = 0;
float Kd = 100;
//Extra PID variables
float currPosition = 0;
float error = 0;
float prevError = 0;
float derivative = 0;
float integral = 0;
int PIDvalue = 0;
//For storing path details
char path[100] = {};
int pathLength = 0;
int finishDetections = 0;
//For ensuring correctness when updating the path.
unsigned long prevTime=0;
unsigned long junctionDetectionTime=0;
//Indicate whether we should take left/right turns or not.
bool leftFlag = false;
bool rightFlag = false;
//If true, the robot will stop, since it has reached the end.
bool doneFlag = false;
//Indicates whether to solve the maze by taking left turns first or right turns first.
bool moveLeftFirst = true;
//Indicates that the robot is in roundTwo.
bool firstTrialFlag = true;
int pathIndex = 0;
//--------------------------------------------------------------------------------------------------------------------------------------------------------
void setup() {
// put your setup code here, to run once:
pinMode(leftMotors_IN1, OUTPUT);
pinMode(leftMotors_IN2, OUTPUT);
pinMode(leftMotors_IN3, OUTPUT);
pinMode(leftMotors_IN4, OUTPUT);
pinMode(rightMotors_IN1, OUTPUT);
pinMode(rightMotors_IN2, OUTPUT);
pinMode(rightMotors_IN3, OUTPUT);
pinMode(rightMotors_IN4, OUTPUT);
pinMode(leftMotors_ENA, OUTPUT);
pinMode(leftMotors_ENB, OUTPUT);
pinMode(rightMotors_ENA, OUTPUT);
pinMode(rightMotors_ENB, OUTPUT);
Serial.begin(9600);
}
//--------------------------------------------------------------------------------------------------------------------------------------------------------
void loop() {
// put your main code here, to run repeatedly:
//set_MotorSpeeds(254, 254, -254, -254);
//delay(100);
readSensors();
if (checkFinishLine())
done();
else if (firstTrialFlag)
solveMaze_FirstTrial();
else
solveMaze_SecondTrial();
}
//--------------------------------------------------------------------------------------------------------------------------------------------------------
bool checkFinishLine() {
for (int i = 0; i<3; i++)
if (sensors[0+i] && !sensors[1+i] && sensors[2+i]){
delay(40);
readSensors();
if (sensors[0+i] && !sensors[1+i] && sensors[2+i]) return true;
}
return false;
}
//--------------------------------------------------------------------------------------------------------------------------------------------------------
void readSensors() {
//Reads the sensor values and stores them in the "sensors" array.
sensors[0] = digitalRead(leftMost_sensor);
sensors[1] = digitalRead(left_sensor);
sensors[2] = digitalRead(center_sensor);
sensors[3] = digitalRead(right_sensor);
sensors[4] = digitalRead(rightMost_sensor);
}
//--------------------------------------------------------------------------------------------------------------------------------------------------------
void testSensors() {
readSensors();
Serial.println("LeftMost Sensor: " + (String)sensors[0]);
Serial.println("Left Sensor: " + (String)sensors[1]);
Serial.println("Center Sensor: " + (String)sensors[2]);
Serial.println("Right Sensor: " + (String)sensors[3]);
Serial.println("RightMost Sensor: " + (String)sensors[4]);
}
//--------------------------------------------------------------------------------------------------------------------------------------------------------
float computePosition(){
//Computes a metric for the current orientation of the robot car.
//If the car is to the right of the line, it will return a value between 0 and 2, depending on how deviated it is.
//If the car is to the left of the line, it will return a value between 2 and 4, depending on how deviated it is.
//If the car is aligned perfectly on the line, or if the car cannot detect a line, the function will return 2.
//Serial.println("Test 1");
if (!sensors[0] && !sensors[1] && !sensors[2] && !sensors[3] && !sensors[4]) return 2;
//Serial.println("Test 2");
return (0.0 * sensors[0] + 1.0 * sensors[1] + 2.0 * sensors[2] + 3.0 * sensors[3] + 4.0 * sensors[4]) /
(sensors[0] + sensors[1] + sensors[2] + sensors[3] + sensors[4]);
}
//--------------------------------------------------------------------------------------------------------------------------------------------------------
void spike() {
set_AbsMotorSpeeds(spikeSpeed, spikeSpeed, spikeSpeed, spikeSpeed);
delay(spikeDelay);
}
//--------------------------------------------------------------------------------------------------------------------------------------------------------
void stopCar() {
analogWrite(leftMotors_ENA, 0);
analogWrite(leftMotors_ENB, 0);
analogWrite(rightMotors_ENA, 0);
analogWrite(rightMotors_ENB, 0);
}
//--------------------------------------------------------------------------------------------------------------------------------------------------------
void set_AbsMotorSpeeds(int frontLeftSpeed, int backLeftSpeed, int frontRightSpeed, int backRightSpeed) {
analogWrite(leftMotors_ENA, frontLeftSpeed);
analogWrite(leftMotors_ENB, backLeftSpeed);
analogWrite(rightMotors_ENA, backRightSpeed);
analogWrite(rightMotors_ENB, frontRightSpeed);
}
//--------------------------------------------------------------------------------------------------------------------------------------------------------
void set_MotorSpeeds(int frontLeftSpeed, int backLeftSpeed, int frontRightSpeed, int backRightSpeed) {
//Sets the speeds of the left and right motors with the value in leftSpeed and rightSpeed.
//If leftSpeed or rightSpeed are negative, the corresponding motor will move backwards.
//Set motor directions:
if (frontLeftSpeed >= 0){
digitalWrite(leftMotors_IN1, LOW);
digitalWrite(leftMotors_IN2, HIGH);
} else{
frontLeftSpeed *= -1;
digitalWrite(leftMotors_IN1, HIGH);
digitalWrite(leftMotors_IN2, LOW);
}
if (backLeftSpeed >= 0){
digitalWrite(leftMotors_IN3, HIGH);
digitalWrite(leftMotors_IN4, LOW);
} else{
backLeftSpeed *= -1;
digitalWrite(leftMotors_IN3, LOW);
digitalWrite(leftMotors_IN4, HIGH);
}
if (frontRightSpeed >= 0){
digitalWrite(rightMotors_IN3, HIGH);
digitalWrite(rightMotors_IN4, LOW);
} else{
frontRightSpeed *= -1;
digitalWrite(rightMotors_IN3, LOW);
digitalWrite(rightMotors_IN4, HIGH);
}
if (backRightSpeed >= 0){
digitalWrite(rightMotors_IN1, HIGH);
digitalWrite(rightMotors_IN2, LOW);
} else{
backRightSpeed *= -1;
digitalWrite(rightMotors_IN1, LOW);
digitalWrite(rightMotors_IN2, HIGH);
}
frontLeftSpeed = (frontLeftSpeed > maxSpeed) ? maxSpeed:frontLeftSpeed;
backLeftSpeed = (backLeftSpeed > maxSpeed) ? maxSpeed:backLeftSpeed;
frontRightSpeed = (frontRightSpeed > maxSpeed) ? maxSpeed:frontRightSpeed;
backRightSpeed = (backRightSpeed > maxSpeed) ? maxSpeed:backRightSpeed;
//Set motor speeds with the absolute value of the inputs:
set_AbsMotorSpeeds(frontLeftSpeed, backLeftSpeed, frontRightSpeed, backRightSpeed);
}
//--------------------------------------------------------------------------------------------------------------------------------------------------------
void moveStraight() {
//Uses PID control to stablizie the car, so that it moves straight on the line.
currPosition = computePosition();
error = (currPosition - 2.0);
//Serial.println("Error = " + String(error));
derivative = error - prevError;
integral = integral + error;
prevError = error;
PIDvalue = error * Kp + integral * Ki + derivative * Kd;
//Serial.println("PIDvalue = " + String(PIDvalue));
set_MotorSpeeds(forwardSpeeds[0] + PIDvalue, forwardSpeeds[1] + PIDvalue, forwardSpeeds[2] - PIDvalue, forwardSpeeds[3] - PIDvalue);
//Serial.println("Left Motor Speed = " + (String)(forwardSpeed + PIDvalue));
//Serial.println("Right Motor Speed = " + (String)(forwardSpeed - PIDvalue + 20));
}
//----------------------------------------------------------------------------------------------------------------------------------------------------------------
void turnLeft(){
//Serial.println("Test");
delay(70);
set_MotorSpeeds(0, 0, 0, 0);
delay(1000);
set_MotorSpeeds(-254, -254, 254, 254);
delay(150);
set_MotorSpeeds(turnLeftSpeeds[0], turnLeftSpeeds[1], turnLeftSpeeds[2], turnLeftSpeeds[3]);
while(digitalRead(center_sensor));
//Serial.println("Test Left Turning");
//delay(50);
while(!digitalRead(left_sensor));
set_MotorSpeeds(0, 0, 0, 0);
delay(1000);
if (digitalRead(rightMost_sensor)) {
set_MotorSpeeds(150, 150, -150, -150);
delay(30);
}
}
//--------------------------------------------------------------------------------------------------------------------------------------------------------
void turnRight(){
//Serial.println("Right Movement");
//Turns the car to the right.
set_MotorSpeeds(0, 0, 0, 0);
delay(1000);
set_MotorSpeeds(254, 254, -254, -254);
delay(150);
set_MotorSpeeds(turnRightSpeeds[0], turnRightSpeeds[1], turnRightSpeeds[2], turnRightSpeeds[3]);
while(digitalRead(center_sensor));
//Serial.println("Test Left Turning");
//delay(50);
while(!digitalRead(right_sensor));
set_MotorSpeeds(0, 0, 0, 0);
delay(1000);
if (digitalRead(leftMost_sensor)) {
set_MotorSpeeds(-150, -150, 150, 150);
delay(30);
}
}
//--------------------------------------------------------------------------------------------------------------------------------------------------------
void turnAround(){
//Serial.println("turn around");
//Turns the car to the right.
delay(100);
set_MotorSpeeds(0, 0, 0, 0);
delay(1000);
set_MotorSpeeds(-254, -254, 254, 254);
delay(150);
set_MotorSpeeds(turnAroundSpeeds[0], turnAroundSpeeds[1], turnAroundSpeeds[2], turnAroundSpeeds[3]);
while(digitalRead(center_sensor));
//Serial.println("Test Left Turning");
//delay(50);
while(!digitalRead(left_sensor));
set_MotorSpeeds(0, 0, 0, 0);
delay(1000);
if (digitalRead(rightMost_sensor)) {
set_MotorSpeeds(150, 150, -150, -150);
delay(30);
}
//delay(250);
//set_MotorSpeeds(0, 0, 0, 0);
//delay(1000);
//while(!sensors[3] && !sensors[4]){
//set_MotorSpeeds(0, 0, -254, -254);
//readSensors();
//}
//while(sensors[0] || sensors[1] || sensors[2] || sensors[3] || sensors[4]){
//set_MotorSpeeds(forwardSpeeds[0], forwardSpeeds[1], forwardSpeeds[2], forwardSpeeds[3]);
//readSensors();
//}
//set_MotorSpeeds(0, 0, 0, 0);
//delay(1000);
//while(!digitalRead(center_sensor)){
//set_MotorSpeeds(turnRightSpeeds[0], turnRightSpeeds[1], turnRightSpeeds[2], turnRightSpeeds[3]);
//}
//set_MotorSpeeds(0, 0, 0, 0);
//delay(1000);
}
//--------------------------------------------------------------------------------------------------------------------------------------------------------
char simplifyDirections(char direction1, char direction2, char direction3) {
//Substitutes a combination of 3 consecutive movements with 1 simpler movement.
//For example, if the robot moves Left, then Backwards, then Right, then this is equivalent to just moving straight.
//Will be used to ensure that the path stored in the paths array is the shortest path.
if (direction1 == 'L' && direction2 == 'B' && direction3 == 'L') return 'S';
if (direction1 == 'L' && direction2 == 'B' && direction3 == 'S') return 'R';
if (direction1 == 'L' && direction2 == 'B' && direction3 == 'R') return 'B';
if (direction1 == 'S' && direction2 == 'B' && direction3 == 'L') return 'R';
if (direction1 == 'S' && direction2 == 'B' && direction3 == 'S') return 'B';
if (direction1 == 'S' && direction2 == 'B' && direction3 == 'R') return 'L';
if (direction1 == 'R' && direction2 == 'B' && direction3 == 'L') return 'B';
if (direction1 == 'R' && direction2 == 'B' && direction3 == 'S') return 'L';
if (direction1 == 'R' && direction2 == 'B' && direction3 == 'R') return 'S';
}
//---------------------------------------------------------------------------------------------------------------------------------------------------------------
void printPath(){
String pathString = "";
for (int i = 0; i<pathLength; i++){
pathString += path[i];
}
Serial.println(pathString);
}
//---------------------------------------------------------------------------------------------------------------------------------------------------------------
void updatePath(char newDirection)
{
//Called when the robot passes any junction.
//Takes as input the direction taken by the car to pass the junction, and adds it to the array.
//If the function detects any possible simplifications before adding the new direction, it will simplify the array by using the
//"simplifyDirections" function on the most recent 3 directions.
leftFlag = false;
rightFlag = false;
unsigned long currTime = millis();
if (currTime - prevTime < 500) {
path[pathLength - 1] = newDirection;
return;
}
prevTime = currTime;
path[pathLength] = newDirection;
pathLength++;
printPath();
}
//---------------------------------------------------------------------------------------------------------------------------------------------------------------
void done() {
pathIndex = 0;
doneFlag = true;
int newPathLength = 0;
//Serial.println("Test");
while (true) {
int numOfShorts = 0;
for (int i = 0; i < pathLength; i++) {
if (i != (pathLength - 1) && path[i + 1] == 'B') {
char newChar = simplifyDirections(path[i], path[i + 1], path[i + 2]);
path[newPathLength] = newChar;
i += 2;
numOfShorts++;
}
else
path[newPathLength] = path[i];
newPathLength++;
}
pathLength = newPathLength;
newPathLength = 0;
if (numOfShorts == 0) break;
}
printPath();
stopCar();
firstTrialFlag = false;
delay(30000);
doneFlag = false;
}
//---------------------------------------------------------------------------------------------------------------------------------------------------------------
void analyzeJunction(){
//When the robot enters a junction, it should decide its next move according to the following rule:
//If a left turn is possible, take it.
//Else, if going straight is possible, move forward.
//Else, if a right turn is possible, take it.
//Else, a dead end has been reached (or the maze is done). Hence, turn around.
//Serial.println((String)rightFlag);
if (moveLeftFirst){
if (sensors[0]) {
leftFlag = true;
return;
}
if (leftFlag) {
updatePath('L');
turnLeft();
return;
}
if (sensors[4]){
rightFlag = true;
//Serial.println((String)rightFlag);
return;
}
delay(30);
readSensors();
if (sensors[1] || sensors[2] || sensors[3]) {
updatePath('S');
return;
}
if (rightFlag) {
updatePath('R');
turnRight();
} else {
updatePath('B');
turnAround();
}
}
else {
if (sensors[4]) {
rightFlag = true;
return;
}
if (rightFlag) {
//Serial.println((String)(millis() - junctionDetectionTime));
updatePath('R');
turnRight();
}
if (sensors[0]){
leftFlag = true;
//Serial.println((String)rightFlag);
return;
}
delay(20);
readSensors();
if (sensors[1] || sensors[2] || sensors[3]) {
updatePath('S');
return;
}
if (leftFlag) {
updatePath('L');
turnLeft();
} else {
updatePath('B');
turnAround();
}
}
}
//---------------------------------------------------------------------------------------------------------------------------------------------------------------
void solveMaze_FirstTrial() {
//If there is a junction or a dead end, analyze it and decide which direction to take.
if(sensors[0] || sensors[4] || (!sensors[0] && !sensors[1] && !sensors[2] && !sensors[3] && !sensors[4]) || leftFlag || rightFlag)
analyzeJunction();
//Otherwise, move straight.
else
moveStraight();
}
//---------------------------------------------------------------------------------------------------------------------------------------------------------------
void solveMaze_SecondTrial() {
moveStraight();
if (pathIndex == pathLength) {
if (sensors[0] || sensors[4])
done();
return;
}
if (path[pathIndex] == 'L' && sensors[0]) {
delay(100);
turnLeft();
pathIndex++;
} else if (path[pathIndex] == 'R' && sensors[4]) {
delay(100);
turnRight();
pathIndex++;
} else if (path[pathIndex] == 'S' && (sensors[0] || sensors[4])) {
set_MotorSpeeds(forwardSpeeds[0], forwardSpeeds[1], forwardSpeeds[2], forwardSpeeds[3]);
delay(200);
pathIndex++;
}
}