-
Notifications
You must be signed in to change notification settings - Fork 1
/
clustering.py
448 lines (364 loc) · 14.6 KB
/
clustering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
"""
Created on Tuesday April 20 2020
@author: Ahmad Mustapha ([email protected])
Contains methods to cluster Deep cluster features.
"""
import time
import numpy as np
from PIL import Image
from PIL import ImageFile
from scipy.sparse import csr_matrix, find
import torch
import torch.utils.data as data
import torchvision.transforms as transforms
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
from sklearn.mixture import GaussianMixture
import random
from sklearn.neighbors import KDTree
def sklearn_GMM(npdata, n_components, random_state=None, verbose=False, **kwargs):
gmm = GaussianMixture(n_components=n_components,
max_iter=kwargs.get("max_iter", 100),
n_init=kwargs.get("n_init",1),
verbose=verbose,
random_state=random_state
)
labels = gmm.fit_predict(npdata)
return labels
def random_clustering(npdata, n_clusters, random_state=None):
n_samples_per_cluster = int(len(npdata)/n_clusters)
clusters = [[] for i in range(0,n_clusters)]
available_samples = set(range(0,len(npdata)))
for i in range(0, n_clusters ):
clusters[i] = random.sample(population= available_samples, k= n_samples_per_cluster)
available_samples = set(available_samples) - set(clusters[i])
labels = []
sample_indices = []
for label, cluster in enumerate(clusters):
sample_indices.extend(cluster)
labels.extend([label]*len(cluster))
sorting_indices = np.argsort(sample_indices)
labels = np.asarray(labels)[sorting_indices]
return labels
def random_knn_clustering(npdata, n_clusters, random_state=None):
n_samples_per_cluster = int(len(npdata)/n_clusters)
data_tree = KDTree(npdata, leaf_size=n_samples_per_cluster)
clusters = [[] for i in range(0,n_clusters)]
available_samples = set(range(0,len(npdata)))
seeds_indices = random.sample(population= available_samples, k=n_clusters)
seeds = npdata[seeds_indices]
_, clusters_indices = data_tree.query(seeds, k=n_samples_per_cluster)
pseudo_labels = []
sample_indices= []
for label, cluster in enumerate(clusters_indices):
sample_indices.extend(cluster)
pseudo_labels.extend([label]*len(cluster))
sorting_indices = np.argsort(sample_indices)
pseudo_labels = np.asarray(pseudo_labels)[sorting_indices]
return pseudo_labels
def sklearn_kmeans(npdata, n_clusters, random_state=None, verbose=False, fit_partial=None , **kwargs):
Kmeans = KMeans(n_clusters = n_clusters,
max_iter=kwargs.get("max_iter", 20),
n_init=kwargs.get("n_init", 1),
verbose=verbose,
random_state=random_state)
if fit_partial:
sample_size = int(fit_partial*len(npdata)/100)
random_indices = np.random.choice(range(0,len(npdata)), size=sample_size, replace=False)
random_sample = npdata[random_indices]
Kmeans.fit(random_sample)
return Kmeans.predict(npdata)
else:
Kmeans.fit_predict(npdata)
return Kmeans.labels_
# def pil_loader(path):
# """Loads an image.
# Args:
# path (string): path to image file
# Returns:
# Image
# """
# with open(path, 'rb') as f:
# img = Image.open(f)
# return img.convert('RGB')
# class ReassignedDataset(data.Dataset):
# """A dataset where the new images labels are given in argument.
# Args:
# image_indexes (list): list of data indexes
# pseudolabels (list): list of labels for each data
# dataset (list): list of tuples with paths to images
# transform (callable, optional): a function/transform that takes in
# an PIL image and returns a
# transformed version
# """
# def __init__(self, dataset, image_indexes, pseudolabels, dataset, transform=None):
# self.imgs = self.make_dataset(image_indexes, pseudolabels, dataset)
# self.transform = transform
# def make_dataset(self, image_indexes, pseudolabels, dataset):
# label_to_idx = {label: idx for idx, label in enumerate(set(pseudolabels))}
# images = []
# for j, idx in enumerate(image_indexes):
# path = dataset[idx][0]
# pseudolabel = label_to_idx[pseudolabels[j]]
# images.append((path, pseudolabel))
# return images
# def __getitem__(self, index):
# """
# Args:
# index (int): index of data
# Returns:
# tuple: (image, pseudolabel) where pseudolabel is the cluster of index datapoint
# """
# path, pseudolabel = self.imgs[index]
# img = pil_loader(path)
# if self.transform is not None:
# img = self.transform(img)
# return img, pseudolabel
# def __len__(self):
# return len(self.imgs)
# def preprocess_features(npdata, pca=256):
# """Preprocess an array of features.
# Args:
# npdata (np.array N * ndim): features to preprocess
# pca (int): dim of output
# Returns:
# np.array of dim N * pca: data PCA-reduced, whitened and L2-normalized
# """
# _, ndim = npdata.shape
# npdata = npdata.astype('float32')
# # Apply PCA-whitening with sklearn
# pca = PCA(n_components=pca, whiten=True, random_state=0)
# npdata = pca.fit_transform(npdata)
# # L2 normalization
# row_sums = np.linalg.norm(npdata, axis=1)
# npdata = npdata / row_sums[:, np.newaxis]
# return npdata
# def make_graph(xb, nnn):
# """Builds a graph of nearest neighbors.
# Args:
# xb (np.array): data
# nnn (int): number of nearest neighbors
# Returns:
# list: for each data the list of ids to its nnn nearest neighbors
# list: for each data the list of distances to its nnn NN
# """
# N, dim = xb.shape
# # we need only a StandardGpuResources per GPU
# res = faiss.StandardGpuResources()
# # L2
# flat_config = faiss.GpuIndexFlatConfig()
# flat_config.device = int(torch.cuda.device_count()) - 1
# index = faiss.GpuIndexFlatL2(res, dim, flat_config)
# index.add(xb)
# D, I = index.search(xb, nnn + 1)
# return I, D
# def cluster_assign(images_lists, dataset):
# """Creates a dataset from clustering, with clusters as labels.
# Args:
# images_lists (list of list): for each cluster, the list of image indexes
# belonging to this cluster
# dataset (list): initial dataset
# Returns:
# ReassignedDataset(torch.utils.data.Dataset): a dataset with clusters as
# labels
# """
# assert images_lists is not None
# pseudolabels = []
# image_indexes = []
# for cluster, images in enumerate(images_lists):
# image_indexes.extend(images)
# pseudolabels.extend([cluster] * len(images))
# normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
# std=[0.229, 0.224, 0.225])
# t = transforms.Compose([transforms.RandomResizedCrop(224),
# transforms.RandomHorizontalFlip(),
# transforms.ToTensor(),
# normalize])
# return ReassignedDataset(image_indexes, pseudolabels, dataset, t)
# def run_kmeans(x, nmb_clusters, verbose=False):
# """Runs kmeans on 1 GPU.
# Args:
# x: data
# nmb_clusters (int): number of clusters
# Returns:
# list: ids of data in each cluster
# """
# n_data, d = x.shape
# # faiss implementation of k-means
# clus = faiss.Clustering(d, nmb_clusters)
# # Change faiss seed at each k-means so that the randomly picked
# # initialization centroids do not correspond to the same feature ids
# # from an epoch to another.
# clus.seed = np.random.randint(1234)
# clus.niter = 20
# clus.max_points_per_centroid = 10000000
# res = faiss.StandardGpuResources()
# flat_config = faiss.GpuIndexFlatConfig()
# flat_config.useFloat16 = False
# flat_config.device = 0
# index = faiss.GpuIndexFlatL2(res, d, flat_config)
# # perform the training
# clus.train(x, index)
# _, I = index.search(x, 1)
# losses = faiss.vector_to_array(clus.obj)
# if verbose:
# print('k-means loss evolution: {0}'.format(losses))
# return [int(n[0]) for n in I], losses[-1]
# def arrange_clustering(images_lists):
# pseudolabels = []
# image_indexes = []
# for cluster, images in enumerate(images_lists):
# image_indexes.extend(images)
# pseudolabels.extend([cluster] * len(images))
# indexes = np.argsort(image_indexes)
# return np.asarray(pseudolabels)[indexes]
# class Kmeans(object):
# def __init__(self, k):
# self.k = k
# def cluster(self, data, verbose=False):
# """Performs k-means clustering.
# Args:
# x_data (np.array N * dim): data to cluster
# """
# end = time.time()
# # PCA-reducing, whitening and L2-normalization
# xb = preprocess_features(data)
# # cluster the data
# I, loss = run_kmeans(xb, self.k, verbose)
# self.images_lists = [[] for i in range(self.k)]
# for i in range(len(data)):
# self.images_lists[I[i]].append(i)
# if verbose:
# print('k-means time: {0:.0f} s'.format(time.time() - end))
# return loss
# def make_adjacencyW(I, D, sigma):
# """Create adjacency matrix with a Gaussian kernel.
# Args:
# I (numpy array): for each vertex the ids to its nnn linked vertices
# + first column of identity.
# D (numpy array): for each data the l2 distances to its nnn linked vertices
# + first column of zeros.
# sigma (float): Bandwidth of the Gaussian kernel.
# Returns:
# csr_matrix: affinity matrix of the graph.
# """
# V, k = I.shape
# k = k - 1
# indices = np.reshape(np.delete(I, 0, 1), (1, -1))
# indptr = np.multiply(k, np.arange(V + 1))
# def exp_ker(d):
# return np.exp(-d / sigma**2)
# exp_ker = np.vectorize(exp_ker)
# res_D = exp_ker(D)
# data = np.reshape(np.delete(res_D, 0, 1), (1, -1))
# adj_matrix = csr_matrix((data[0], indices[0], indptr), shape=(V, V))
# return adj_matrix
# def run_pic(I, D, sigma, alpha):
# """Run PIC algorithm"""
# a = make_adjacencyW(I, D, sigma)
# graph = a + a.transpose()
# cgraph = graph
# nim = graph.shape[0]
# W = graph
# t0 = time.time()
# v0 = np.ones(nim) / nim
# # power iterations
# v = v0.astype('float32')
# t0 = time.time()
# dt = 0
# for i in range(200):
# vnext = np.zeros(nim, dtype='float32')
# vnext = vnext + W.transpose().dot(v)
# vnext = alpha * vnext + (1 - alpha) / nim
# # L1 normalize
# vnext /= vnext.sum()
# v = vnext
# if i == 200 - 1:
# clust = find_maxima_cluster(W, v)
# return [int(i) for i in clust]
# def find_maxima_cluster(W, v):
# n, m = W.shape
# assert (n == m)
# assign = np.zeros(n)
# # for each node
# pointers = list(range(n))
# for i in range(n):
# best_vi = 0
# l0 = W.indptr[i]
# l1 = W.indptr[i + 1]
# for l in range(l0, l1):
# j = W.indices[l]
# vi = W.data[l] * (v[j] - v[i])
# if vi > best_vi:
# best_vi = vi
# pointers[i] = j
# n_clus = 0
# cluster_ids = -1 * np.ones(n)
# for i in range(n):
# if pointers[i] == i:
# cluster_ids[i] = n_clus
# n_clus = n_clus + 1
# for i in range(n):
# # go from pointers to pointers starting from i until reached a local optim
# current_node = i
# while pointers[current_node] != current_node:
# current_node = pointers[current_node]
# assign[i] = cluster_ids[current_node]
# assert (assign[i] >= 0)
# return assign
# class PIC(object):
# """Class to perform Power Iteration Clustering on a graph of nearest neighbors.
# Args:
# args: for consistency with k-means init
# sigma (float): bandwidth of the Gaussian kernel (default 0.2)
# nnn (int): number of nearest neighbors (default 5)
# alpha (float): parameter in PIC (default 0.001)
# distribute_singletons (bool): If True, reassign each singleton to
# the cluster of its closest non
# singleton nearest neighbors (up to nnn
# nearest neighbors).
# Attributes:
# images_lists (list of list): for each cluster, the list of image indexes
# belonging to this cluster
# """
# def __init__(self, args=None, sigma=0.2, nnn=5, alpha=0.001, distribute_singletons=True):
# self.sigma = sigma
# self.alpha = alpha
# self.nnn = nnn
# self.distribute_singletons = distribute_singletons
# def cluster(self, data, verbose=False):
# end = time.time()
# # preprocess the data
# xb = preprocess_features(data)
# # construct nnn graph
# I, D = make_graph(xb, self.nnn)
# # run PIC
# clust = run_pic(I, D, self.sigma, self.alpha)
# images_lists = {}
# for h in set(clust):
# images_lists[h] = []
# for data, c in enumerate(clust):
# images_lists[c].append(data)
# # allocate singletons to clusters of their closest NN not singleton
# if self.distribute_singletons:
# clust_NN = {}
# for i in images_lists:
# # if singleton
# if len(images_lists[i]) == 1:
# s = images_lists[i][0]
# # for NN
# for n in I[s, 1:]:
# # if NN is not a singleton
# if not len(images_lists[clust[n]]) == 1:
# clust_NN[s] = n
# break
# for s in clust_NN:
# del images_lists[clust[s]]
# clust[s] = clust[clust_NN[s]]
# images_lists[clust[s]].append(s)
# self.images_lists = []
# for c in images_lists:
# self.images_lists.append(images_lists[c])
# if verbose:
# print('pic time: {0:.0f} s'.format(time.time() - end))
# return 0