diff --git a/_pages/about.md b/_pages/about.md
index e2c1d13..44accd1 100644
--- a/_pages/about.md
+++ b/_pages/about.md
@@ -35,16 +35,21 @@ I am interested in explainable ai, unsupervised learning, representation learnin
+ - S. Haufe, R. Wilming, B. Clark, R. Zhumagambetov, D. Panknin, A. Boubekki. Explainable AI needs formal notions of explanation correctness. Intepretable AI Workshop @ NeurIPS (2024) [link]
+
+
+ - A. Boubekki, S. Fadel, S.Mair. Leveraging Activations for Superpixel Explanations. ArXiv [link]
+
+
-
S. Gautam, A. Boubekki, M. Höhne, M. Kampffmeyer . Prototypical Self-Explainable Models Without Re-training. Transactions on Machine Learning Research (2024). [link]
-
-
-
+
-
R. Clark et al. EXACT: Towards a platform for empirically benchmarking Machine Learning model explanation methods (2024). [link]
-
-
-
+
-
R. Kjærsgaard, A. Boubekki, L.H. Clemmensen. Pantypes: Diverse Representatives for Self-Explainable Models. AAAI Conference on Artificial Intelligence (2024). [link]
+
-
K.V. Olesen, A. Boubekki, M.C. Kampffmeyer, R. Jenssen, A.N. Christensen, S. Hørlück, L.H. Clemmensen. A Contextually Supported Abnormality Detector for Maritime Trajectories. Journal of Marine Science and
Engineering (2023). [link]