forked from culdo/NPTU_AI_course
-
Notifications
You must be signed in to change notification settings - Fork 0
/
random_search.py
51 lines (39 loc) · 1.3 KB
/
random_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import numpy as np
import matplotlib.pyplot as plt
n_particles = 20
particle_dim = 2
particles_shape = (n_particles, particle_dim)
# Randomly generate clusters using Normal Distribution (randn)
rand_particles = np.random.rand(*particles_shape)
test_goal = [0.5, 0.75]
iteration = 0
best_goal = None
best_distant = None
while True:
distant_list = []
rand_particles = np.random.rand(*particles_shape)
plt.scatter(rand_particles[:, 0], rand_particles[:, 1], s=50, alpha=0.5)
plt.scatter(*test_goal, s=200, marker="*", alpha=1.0)
for p in rand_particles:
distance = np.linalg.norm(p - test_goal)
distant_list.append(distance)
min_idx = np.argmin(distant_list)
min_particle = rand_particles[min_idx]
if best_distant is None:
best_distant = distant_list[min_idx]
best_goal = min_particle
if distant_list[min_idx] < best_distant:
best_distant = distant_list[min_idx]
best_goal = min_particle
plt.scatter(*best_goal, s=200, marker="+", alpha=1.0)
plt.ylim((0, 1.0))
plt.xlim((0, 1.0))
plt.title("iteration %s" % iteration)
plt.pause(0.5)
plt.draw()
plt.clf()
# We assume converged when centroid no more updated that same as k-means.
# if mean_distance < 0.0001:
# break
iteration += 1
plt.show()