forked from adangert/JoustMania
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcontroller_util.py
executable file
·263 lines (200 loc) · 8.49 KB
/
controller_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import asyncio
import psmove
import player
import piparty
import math
#import filterpy
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
import numpy as np
from itertools import count
import random
import multiprocessing
import matplotlib.animation as animation
from multiprocessing import Process
import numpy as np
import time
# from filterpy.kalman import ExtendedKalmanFilter
#https://thepoorengineer.com/en/ekf-impl/
#https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/blob/master/11-Extended-Kalman-Filters.ipynb
#link 3
#https://kusemanohar.info/2020/04/08/sensor-fusion-extended-kalman-filter-ekf/
#Check this one out:
#https://github.com/mrsp/imu_ekf/blob/7fb544b99bfb2638e008517105e18a369bef5f18/src/imu_estimator.cpp
#https://github.com/soarbear/imu_ekf/blob/master/imu_extended_kalman_filter.py
#another good link:
#https://nitinjsanket.github.io/tutorials/attitudeest/kf
#http://philsal.co.uk/projects/imu-attitude-estimation
#complimentory filter
#http://www.pieter-jan.com/node/11
#maybe we should try a complimentory filter as from above first!
#we are trying to find the best process model of an IMU that contains linear acceleration
#because that is the value we care most about and the one we want to track
# Continually prints sensor readings from the first controller found.
#notes 9/30/21
#well if we have the orientation!! then we can just get the linear acceleration by subtraction of it.
#so maybe we should just try the standard tutorials and then just do some regular estimation of linear accelration after we have
#orientation and acceleration
def FormatVec(v, places=5):
fmt = '{:%d.2f}' % places
return ', '.join([ fmt.format(e) for e in v ])
def VecLen(v):
return math.sqrt(sum([ e*e for e in v ]))
def Normalize(v):
m = VecLen(v)
return tuple([ e / m for e in v ])
async def Loop(plr,q):
print("Acceleration Jerk Gyro")
dt = 0.05
# rk = ExtendedKalmanFilter(dim_x=12,dim_z=6)
#initial starting values
#we care about linear acceleration.
#orientation, acceleration, velocity?
#gyroscope, accelerometer
#From Link3 we are going to use orientation, linear acceleration, gyroscope bias, and accelerometer bias
#for the Joustmania game we don't care so much about position
#there is 4 states each with 3 variables,.
# rk.x = array([0,0,0,0,0,0,0,0,0,0,0,0])
#state transition matrix
#again Link3
#This needs to be linearized likely with a program that can find the Jacobian
#x_dot =
#[G(X_2)^(-1)(W_m-x_4-n_g),
#[g + R(x_2)(a_m-x_5-n_a)
#n_bg
#n_ba]
#currently incorect, needs to be updated with maths
#we need dead reconing for the orientation first:
#current orientation
#look at github code next
#So the question is, how does orientation affect linear velocity??
#we need to estimate the direction of the controller first
#so for the new direction: complementary filter to get the angle the controller is at
#we need to then subtract the angle from the acceleration data to get the linear acceleration
#we are using many more frames, so this actually should be more performant too
# rk.F = eye(3) + array([[0, 1, 0],
# [0, 0, 0],
# [0, 0, 0]]) * dt
# range_std = 5. # meters
# rk.R = np.diag([range_std**2])
# rk.Q[0:2, 0:2] = Q_discrete_white_noise(2, dt=dt, var=0.1)
# rk.Q[2,2] = 0.1
# rk.P *= 50
# xs, track = [], []
# for i in range(int(20/dt)):
# z = radar.get_range()
# track.append((radar.pos, radar.vel, radar.alt))
# rk.update(array([z]), HJacobian_at, hx)
# xs.append(rk.x)
# rk.predict()
# xs = asarray(xs)
# track = asarray(track)
# time = np.arange(0, len(xs)*dt, dt)
# ekf_internal.plot_radar(xs, track, time)
#we should first get the gyro and accelerometer data and plot it
#so we can see how noisy it is
while True:
#we could try just changing this to the change in jerk over time (smoothed out?)
for event in plr.get_events():
if event.type != player.EventType.SENSOR:
continue
print('acc:|%s| = %+.02f jerk:|%s| = %+7.02f gyro:|%s| = %+2.02f\n' % (
FormatVec(event.acceleration),
event.acceleration_magnitude,
FormatVec(event.jerk, 7),
event.jerk_magnitude,
FormatVec(event.gyroscope),
VecLen(event.gyroscope)), end='')
disp_tup = ( float(event.acceleration_magnitude), event.acceleration[0], event.acceleration[1], event.acceleration[2],
VecLen(event.gyroscope), event.gyroscope[0], event.gyroscope[1], event.gyroscope[2],
event.jerk_magnitude, event.jerk[0],event.jerk[1],event.jerk[2])
q.put(disp_tup)
# q.put(float(event.acceleration_magnitude))
# y1_data = np.delete(y1_data, [0])
# y1_data = np.append(y1_data,[float(event.acceleration_magnitude)])
# # y1_data.pop(0)
# # y1_data.append(event.acceleration_magnitude)
# line1.set_ydata(y1_data)
# # adjust limits if new data goes beyond bounds
# if np.min(y1_data)<=line1.axes.get_ylim()[0] or np.max(y1_data)>=line1.axes.get_ylim()[1]:
# plt.ylim([np.min(y1_data)-np.std(y1_data),np.max(y1_data)+np.std(y1_data)])
# # this pauses the data so the figure/axis can catch up - the amount of pause can be altered above
# #plt.show()
# plt.pause(0.0001)
#this should be the minimum amount to capture packets
await asyncio.sleep(1/30)
def runGraph(q):
# Parameters
x_len = 100 # Number of points to display
y_range = [-0.05, 0.05] # Range of possible Y values to display
# Create figure for plotting
n_rows = 4
n_cols = 4
num_plots = n_rows * n_cols
fig, axs = plt.subplots(n_rows,n_cols)
# fig = plt.figure()
# ax = fig.add_subplot(1, 1, 1)
xs = list(range(0, x_len))
mag_ys = [0] * x_len
# acc_x_xs = list(range(0, x_len))
acc_x_ys = [0] * x_len
plots_ys = [[0]* x_len for x in range(num_plots)]
plots = []
for x in range(n_rows):
for y in range(n_cols):
axs[y,x].set_ylim(y_range)
plots.append(axs[y,x].plot(xs, plots_ys[y+(x*n_rows)])[0])
# plots.append(axs[0,0].plot(xs, plots_ys[0])[0])
# plots.append(axs[1,0].plot(xs, plots_ys[1])[0])
# plots.append(axs[2,0].plot(xs, plots_ys[2])[0])
# plots.append(axs[3,0].plot(xs, plots_ys[3])[0])
# Add labels
# axs[0,0].set_title('Acceleration Magnitude')
# axs[0,1].set_title('Acceleration x')
# axs[0,2].set_title('Acceleration y')
# axs[0,3].set_title('Acceleration z')
# plt.xlabel('Samples')
# plt.ylabel('Temperature (deg C)')
# This function is called periodically from FuncAnimation
def animate(i):
nonlocal mag_ys, acc_x_ys, plots, plots_ys
while not q.empty():
q_val = q.get()
for j, plt in enumerate(plots):
if(j < len(q_val)):
q_val_info = q_val[j]
plots_ys[j].append(q_val_info)
plots_ys[j] = plots_ys[j][-x_len:]
plots[j].set_ydata(plots_ys[j])
# q_mag = q_val[0]
# q_acc_x = q_val[1]
# # Add y to list
# mag_ys.append(q_mag)
# acc_x_ys.append(q_acc_x)
# # Limit y list to set number of items
# mag_ys = mag_ys[-x_len:]
# acc_x_ys = acc_x_ys[-x_len:]
# # Update line with new Y values
# mag.set_ydata(mag_ys)
# acc_x.set_ydata(acc_x_ys)
return plots
# Set up plot to call animate() function periodically
ani = animation.FuncAnimation(fig,
animate,
interval=20,
blit=True)
plt.show()
def Main():
print("starting main")
q = multiprocessing.Queue()
p = Process(target=runGraph, args=(q,))
p.start()
# piparty.Menu.enable_bt_scanning()
move = psmove.PSMove(0)
# move.enable_orientation(True)
p1 = player.Player(move)
asyncio.get_event_loop().run_until_complete(Loop(p1,q))
p.join()
if __name__ == '__main__':
#print("hello this is the main program")
Main()