-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
144 lines (117 loc) · 4.47 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import torch
from torch.utils.data import DataLoader
import argparse
from trainer import Trainer
from datautils import ZSLDataset
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='awa2')
parser.add_argument('--n_epochs', type=int, default=100)
parser.add_argument('--batch_size', type=int, default=50)
parser.add_argument('--latent_dim', type=int, default=64)
parser.add_argument('--lr', type=float, default=1e-4)
parser.add_argument('--gzsl', action='store_true', default=False)
parser.add_argument('--da', action='store_true', default=False)
parser.add_argument('--ca', action='store_true', default=False)
parser.add_argument('--support', action='store_true', default=False)
return parser.parse_args()
def main():
# setup parameters for trainer
args = parse_args()
if args.dataset == 'awa2' or args.dataset == 'awa1':
x_dim = 2048
attr_dim = 85
n_train = 40
n_test = 10
elif args.dataset == 'cub':
x_dim = 2048
attr_dim = 312
n_train = 150
n_test = 50
elif args.dataset == 'sun':
x_dim = 2048
attr_dim = 102
n_train = 645
n_test = 72
else:
raise NotImplementedError
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
params = {
'batch_size': args.batch_size,
'shuffle': True,
'num_workers': 0,
}
train_dataset = ZSLDataset(args.dataset, n_train, n_test, train=True, gzsl=args.gzsl)
train_generator = DataLoader(train_dataset, **params)
layer_sizes = {
'x_enc': 1560,
'x_dec': 1660,
'c_enc': 1450,
'c_dec': 660
}
kwargs = {
'gzsl': args.gzsl,
'use_da': args.da,
'use_ca': args.ca,
'use_support': args.support,
}
train_agent = Trainer(
device, args.dataset, x_dim, attr_dim, args.latent_dim,
n_train, n_test, args.lr, layer_sizes, **kwargs
)
# load previous models, if any
vae_start_ep = train_agent.load_models()
print('Training the VAE')
for ep in range(vae_start_ep + 1, args.n_epochs + 1):
# train the VAE
vae_loss = 0.0
da_loss, ca_loss = 0.0, 0.0
for idx, (img_features, attr, label_idx) in enumerate(train_generator):
losses = train_agent.fit_VAE(img_features, attr, label_idx, ep)
vae_loss += losses[0]
da_loss += losses[1]
ca_loss += losses[2]
n_batches = idx + 1
print("[VAE Training] Losses for epoch: [%3d] : " \
"%.4f(V), %.4f(D), %.4f(C)" \
%(ep, vae_loss/n_batches, da_loss/n_batches, ca_loss/n_batches))
# save VAE after each epoch
train_agent.save_VAE(ep)
seen_dataset = None
if args.gzsl:
seen_dataset = train_dataset.gzsl_dataset
syn_dataset = train_agent.create_syn_dataset(
train_dataset.test_classmap, train_dataset.attributes, seen_dataset)
final_dataset = ZSLDataset(args.dataset, n_train, n_test,
train=True, gzsl=args.gzsl, synthetic=True, syn_dataset=syn_dataset)
final_train_generator = DataLoader(final_dataset, **params)
# compute accuracy on test dataset
test_dataset = ZSLDataset(args.dataset, n_train, n_test, False, args.gzsl)
test_generator = DataLoader(test_dataset, **params)
best_acc = 0.0
for ep in range(1, 1 + 2 * args.n_epochs):
# train final classifier
total_loss = 0
for idx, (features, _, label_idx) in enumerate(final_train_generator):
loss = train_agent.fit_final_classifier(features, label_idx)
total_loss += loss
total_loss = total_loss / (idx + 1)
print('[Final Classifier Training] Loss for epoch: [%3d]: %.3f' % (ep, total_loss))
## find accuracy on test data
if args.gzsl:
acc_s, acc_u = train_agent.compute_accuracy(test_generator)
acc = 2 * acc_s * acc_u / (acc_s + acc_u)
# print(acc, acc_s, acc_u)
else:
acc = train_agent.compute_accuracy(test_generator)
if acc >= best_acc:
best_acc = acc
if args.gzsl:
best_acc_s = acc_s
best_acc_u = acc_u
if args.gzsl:
print('Best Accuracy: %.3f ==== Seen: [%.3f] -- Unseen[%.3f]' %(best_acc, best_acc_s, best_acc_u))
else:
print('Best Accuracy: %.3f' % best_acc)
if __name__ == '__main__':
main()