-
Notifications
You must be signed in to change notification settings - Fork 24
/
camera_calibration.py
706 lines (580 loc) · 30.8 KB
/
camera_calibration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Feb 13 11:03:39 2018
@author: abhijit
"""
# Python 2/3 compatibility
from __future__ import print_function
# this is important else throws error
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from numpy import linspace
import numpy as np
import cv2
import matplotlib.pyplot as plt
# local modules
# built-in modules
import os
from multiprocessing.dummy import Pool as ThreadPool
import argparse
from argparse import RawTextHelpFormatter
import glob
import pickle
import pandas as pd
class Camera_Calibration_API:
""" A complete API to calibrate camera with chessboard or symmetric_circles or asymmetric_circles.
also runs on multi-threads
Constructor keyword arguments:
pattern_type --str: One of ['chessboard','symmetric_circles,'asymmetric_circles','custom'] (No default)
pattern_rows --int: Number of pattern points along row (No default)
pattern_columns --int: Number of pattern points along column (No default)
distance_in_world_units --float: The distance between pattern points in any world unit. (Default 1.0)
figsize: To set the figure size of the matplotlib.pyplot (Default (8,8))
debug_dir --str: Optional path to a directory to save the images (Default None)
The images include :
1.Points visulized on the calibration board
2.Reprojection error plot
3.Pattern centric and camera centric views of the calibration board
term_criteria: The termination criteria for the subpixel refinement (Default: (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_COUNT, 30, 0.001))
"""
def __init__(self,
pattern_type,
pattern_rows,
pattern_columns,
distance_in_world_units = 1.0,
figsize = (8,8),
debug_dir = None,
term_criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_COUNT, 30, 0.001)
):
pattern_types = ["chessboard","symmetric_circles","asymmetric_circles","custom"]
assert pattern_type in pattern_types, "pattern type must be one of {}".format(pattern_types)
self.pattern_type = pattern_type
self.pattern_rows = pattern_rows
self.pattern_columns = pattern_columns
self.distance_in_world_units = distance_in_world_units
self.figsize = figsize
self.debug_dir = debug_dir
self.term_criteria = term_criteria
self.subpixel_refinement = True #turn on or off subpixel refinement
# on for chessboard
# off for circular objects
# set accordingly for custom pattern
# NOTE: turining on subpixel refinement for circles gives a very high
# reprojection error.
if self.pattern_type in ["asymmetric_circles","symmetric_circles"]:
self.subpixel_refinement = False
self.use_clustering = True
# Setup Default SimpleBlobDetector parameters.
self.blobParams = cv2.SimpleBlobDetector_Params()
# Change thresholds
self.blobParams.minThreshold = 8
self.blobParams.maxThreshold = 255
# Filter by Area.
self.blobParams.filterByArea = True
self.blobParams.minArea = 50 # minArea may be adjusted to suit for your experiment
self.blobParams.maxArea = 10e5 # maxArea may be adjusted to suit for your experiment
# Filter by Circularity
self.blobParams.filterByCircularity = True
self.blobParams.minCircularity = 0.8
# Filter by Convexity
self.blobParams.filterByConvexity = True
self.blobParams.minConvexity = 0.87
# Filter by Inertia
self.blobParams.filterByInertia = True
self.blobParams.minInertiaRatio = 0.01
if self.pattern_type == "asymmetric_circles":
self.double_count_in_column = True # count the double circles in asymmetrical circular grid along the column
if self.debug_dir and not os.path.isdir(self.debug_dir):
os.mkdir(self.debug_dir)
print("The Camera Calibration API is initialized and ready for calibration...")
@staticmethod
def _splitfn(fn):
path, fn = os.path.split(fn)
name, ext = os.path.splitext(fn)
return path, name, ext
def _symmetric_world_points(self):
x,y = np.meshgrid(range(self.pattern_columns),range(self.pattern_rows))
prod = self.pattern_rows * self.pattern_columns
pattern_points=np.hstack((x.reshape(prod,1),y.reshape(prod,1),np.zeros((prod,1)))).astype(np.float32)
return(pattern_points)
def _asymmetric_world_points(self):
pattern_points = []
if self.double_count_in_column:
for i in range(self.pattern_rows):
for j in range(self.pattern_columns):
x = j/2
if j%2 == 0:
y = i
else:
y = i + 0.5
pattern_points.append((x,y))
else:
for i in range(self.pattern_rows):
for j in range(self.pattern_columns):
y = i/2
if i%2 == 0:
x = j
else:
x = j + 0.5
pattern_points.append((x,y))
pattern_points = np.hstack((pattern_points,np.zeros((self.pattern_rows*self.pattern_columns,1)))).astype(np.float32)
return(pattern_points)
def _chessboard_image_points(self,img):
found, corners = cv2.findChessboardCorners(img,(self.pattern_columns,self.pattern_rows))
return(found,corners)
def _circulargrid_image_points(self,img,flags,blobDetector):
found, corners = cv2.findCirclesGrid(img,(self.pattern_columns,self.pattern_rows),
flags=flags,
blobDetector=blobDetector
)
return(found,corners)
def _calc_reprojection_error(self,figure_size=(8,8),save_dir=None):
"""
Util function to Plot reprojection error
"""
reprojection_error = []
for i in range(len(self.calibration_df)):
imgpoints2, _ = cv2.projectPoints(self.calibration_df.obj_points[i], self.calibration_df.rvecs[i], self.calibration_df.tvecs[i], self.camera_matrix, self.dist_coefs)
temp_error = cv2.norm(self.calibration_df.img_points[i],imgpoints2, cv2.NORM_L2)/len(imgpoints2)
reprojection_error.append(temp_error)
self.calibration_df['reprojection_error'] = pd.Series(reprojection_error)
avg_error = np.sum(np.array(reprojection_error))/len(self.calibration_df.obj_points)
x = [os.path.basename(p) for p in self.calibration_df.image_names]
y_mean = [avg_error]*len(self.calibration_df.image_names)
fig,ax = plt.subplots()
fig.set_figwidth(figure_size[0])
fig.set_figheight(figure_size[1])
# Plot the data
ax.scatter(x,reprojection_error,label='Reprojection error', marker='o') #plot before
# Plot the average line
ax.plot(x,y_mean, label='Mean Reprojection error', linestyle='--')
# Make a legend
ax.legend(loc='upper right')
for tick in ax.get_xticklabels():
tick.set_rotation(90)
# name x and y axis
ax.set_title("Reprojection_error plot")
ax.set_xlabel("Image_names")
ax.set_ylabel("Reprojection error in pixels")
if save_dir:
plt.savefig(os.path.join(save_dir,"reprojection_error.png"))
plt.show()
print("The Mean Reprojection Error in pixels is: {}".format(avg_error))
def calibrate_camera(self,
images_path_list,
threads = 4,
custom_world_points_function=None,
custom_image_points_function=None,
):
""" User facing method to calibrate the camera
Keyword arguments
images_path_list: A list containing full paths to calibration images (No default)
threads --int: Number of threads to run the calibration (Default 4)
custom_world_points_function --function: Must be given if pattern_type="custom", else leave at default (Default None)
custom_image_points_function --function: Must be given if the patter_type="custom", else leave at default (Default None)
A Note on custom_world_points_function() and custom_image_points_function()
* custom_world_points_function(pattern_rows,pattern_columns):
1) This function is responsible for calculating the 3-D world points of the given custom calibration pattern.
2) Should take in two keyword arguments in the following order: Number of rows in pattern(int), Number of columns in pattern(int)
3) Must return only a single numpy array of shape (M,3) and type np.float32 or np.float64 with M being the number of control points
of the custom calibration pattern. The last column of the array (z axis) should be an array of 0
4) The distance_in_world_units is not multiplied in this case. Hence, account for that inside the function before returning
5) The world points must be ordered in this specific order : row by row, left to right in every row
* custom_image_points_function(img,pattern_rows,pattern_columns):
1) This function is responsible for finding the 2-D image points from the custom calibration image.
2) Should take in 3 keyword arguments in the following order: image(numpy array),Number of rows in pattern(int), Number of columns in pattern(int)
3) This must return 2 variables: return_value, image_points
4) The first one is a boolean Representing whether all the control points in the calibration images are found
5) The second one is a numpy array of shape (N,2) of type np.float32 containing the pixel coordinates or the image points of the control points.
where N is the number of control points.
6) This function should return True only if all the control points are detected (M = N)
7) If all the control points are not detected, fillup the 2-D numpy array with 0s entirely and return with bool == False.
OUTPUT
Prints:
The calibration log
plots the reprojection error plot
Returns:
A dictionary with the follwing keys:
return_value of cv2.calibrate_camera --key:'rms'
camera intrinsic matrix --key: 'intrinsic_matrix'
distortion coeffs --key: 'distortion_coefficients'
Saves:
Optionally saves the following images if debug directory is specified in the constructor
1.Points visulized on the calibration board
2.Reprojection error plot
"""
if self.pattern_type == "custom":
assert custom_world_points_function is not None, "Must implement a custom_world_points_function for 'custom' pattern "
assert custom_image_points_function is not None, "Must implement a custom_image_points_function for 'custom' pattern"
# initialize place holders
img_points = []
obj_points = []
working_images = []
images_path_list.sort()
print("There are {} {} images given for calibration".format(len(images_path_list),self.pattern_type))
if self.pattern_type == "chessboard":
pattern_points = self._symmetric_world_points() * self.distance_in_world_units
elif self.pattern_type == "symmetric_circles":
pattern_points = self._symmetric_world_points() * self.distance_in_world_units
blobDetector = cv2.SimpleBlobDetector_create(self.blobParams)
flags = cv2.CALIB_CB_SYMMETRIC_GRID
if self.use_clustering:
flags = cv2.CALIB_CB_SYMMETRIC_GRID + cv2.CALIB_CB_CLUSTERING
elif self.pattern_type == "asymmetric_circles":
pattern_points = self._asymmetric_world_points() * self.distance_in_world_units
blobDetector = cv2.SimpleBlobDetector_create(self.blobParams)
flags = cv2.CALIB_CB_ASYMMETRIC_GRID
if self.use_clustering:
flags = cv2.CALIB_CB_ASYMMETRIC_GRID + cv2.CALIB_CB_CLUSTERING
elif self.pattern_type == "custom":
pattern_points = custom_world_points_function(self.pattern_rows,self.pattern_columns)
h, w = cv2.imread(images_path_list[0], 0).shape[:2]
def process_single_image(img_path):
print("Processing {}".format(img_path))
img = cv2.imread(img_path,0) # gray scale
if img is None:
print("Failed to load {}".format(img_path))
return None
assert w == img.shape[1] and h == img.shape[0],"All the images must have same shape"
if self.pattern_type == "chessboard":
found,corners = self._chessboard_image_points(img)
elif self.pattern_type == "asymmetric_circles" or self.pattern_type == "symmetric_circles":
found,corners = self._circulargrid_image_points(img,flags,blobDetector)
elif self.pattern_type == "custom":
found,corners = custom_image_points_function(img,self.pattern_rows,self.pattern_columns)
assert corners[0] == pattern_points[0], "custom_image_points_function should return a numpy array of length matching the number of control points in the image"
if found:
#self.working_images.append(img_path)
if self.subpixel_refinement:
corners2 = cv2.cornerSubPix(img, corners, (11, 11), (-1, -1), self.term_criteria)
else:
corners2 = corners.copy()
if self.debug_dir:
vis = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
cv2.drawChessboardCorners(vis, (self.pattern_columns,self.pattern_rows), corners2, found)
path, name, ext = self._splitfn(img_path)
outfile = os.path.join(self.debug_dir, name + '_pts_vis.png')
cv2.imwrite(outfile, vis)
else:
print("Calibration board NOT FOUND")
return(None)
print("Calibration board FOUND")
return(img_path,corners2,pattern_points)
threads_num = int(threads)
if threads_num <= 1:
calibrationBoards = [process_single_image(img_path) for img_path in images_path_list]
else:
print("Running with %d threads..." % threads_num)
pool = ThreadPool(threads_num)
calibrationBoards = pool.map(process_single_image, images_path_list)
calibrationBoards = [x for x in calibrationBoards if x is not None]
for (img_path,corners, pattern_points) in calibrationBoards:
working_images.append(img_path)
img_points.append(corners)
obj_points.append(pattern_points)
# combine it to a dataframe
self.calibration_df = pd.DataFrame({"image_names":working_images,
"img_points":img_points,
"obj_points":obj_points,
})
self.calibration_df.sort_values("image_names")
self.calibration_df = self.calibration_df.reset_index(drop=True)
# calibrate the camera
self.rms, self.camera_matrix, self.dist_coefs, rvecs, tvecs = cv2.calibrateCamera(self.calibration_df.obj_points, self.calibration_df.img_points, (w, h), None, None)
self.calibration_df['rvecs'] = pd.Series(rvecs)
self.calibration_df['tvecs'] = pd.Series(tvecs)
print("\nRMS:", self.rms)
print("camera matrix:\n", self.camera_matrix)
print("distortion coefficients: ", self.dist_coefs.ravel())
# plot the reprojection error graph
self._calc_reprojection_error(figure_size=self.figsize,save_dir=self.debug_dir)
result_dictionary = {
"rms":self.rms,
"intrinsic_matrix":self.camera_matrix,
"distortion_coefficients":self.dist_coefs,
}
return(result_dictionary)
def visualize_calibration_boards(self,
cam_width = 20.0,
cam_height = 10.0,
scale_focal = 40):
"""
User facing method to visualize the calibration board orientations in 3-D
Plots both the pattern centric and the camera centric views
Keyword Arguments:
cam_width --float: width of cam in visualization (Default 20.0)
cam_height --float: height of cam in visualization (Default 10.0)
scale_focal --int: Focal length is scaled accordingly (Default 40)
Output:
Plots the camera centric and pattern centric views of the chessboard in 3-D using matplotlib
Optionally saves these views in the debug directory if the constructor is initialized with
debug directory
TIP: change the values of cam_width, cam_height for better visualizations
"""
# Plot the camera centric view
visualize_views(camera_matrix=self.camera_matrix,
rvecs = self.calibration_df.rvecs,
tvecs = self.calibration_df.tvecs,
board_width=self.pattern_columns,
board_height=self.pattern_rows,
square_size=self.distance_in_world_units,
cam_width = cam_width,
cam_height = cam_height,
scale_focal = scale_focal,
patternCentric = False,
figsize = self.figsize,
save_dir = self.debug_dir
)
# Plot the pattern centric view
visualize_views(camera_matrix=self.camera_matrix,
rvecs = self.calibration_df.rvecs,
tvecs = self.calibration_df.tvecs,
board_width=self.pattern_columns,
board_height=self.pattern_rows,
square_size=self.distance_in_world_units,
cam_width = cam_width,
cam_height = cam_height,
scale_focal = scale_focal,
patternCentric = True,
figsize = self.figsize,
save_dir = self.debug_dir
)
#######################################################################################################################
## 3-D plotting the pattern centric and camera centric views
def _inverse_homogeneoux_matrix(M):
# util_function
R = M[0:3, 0:3]
T = M[0:3, 3]
M_inv = np.identity(4)
M_inv[0:3, 0:3] = R.T
M_inv[0:3, 3] = -(R.T).dot(T)
return M_inv
def _transform_to_matplotlib_frame(cMo, X, inverse=False):
# util function
M = np.identity(4)
M[1,1] = 0
M[1,2] = 1
M[2,1] = -1
M[2,2] = 0
if inverse:
return M.dot(_inverse_homogeneoux_matrix(cMo).dot(X))
else:
return M.dot(cMo.dot(X))
def _create_camera_model(camera_matrix, width, height, scale_focal, draw_frame_axis=False):
# util function
fx = camera_matrix[0,0]
fy = camera_matrix[1,1]
focal = 2 / (fx + fy)
f_scale = scale_focal * focal
# draw image plane
X_img_plane = np.ones((4,5))
X_img_plane[0:3,0] = [-width, height, f_scale]
X_img_plane[0:3,1] = [width, height, f_scale]
X_img_plane[0:3,2] = [width, -height, f_scale]
X_img_plane[0:3,3] = [-width, -height, f_scale]
X_img_plane[0:3,4] = [-width, height, f_scale]
# draw triangle above the image plane
X_triangle = np.ones((4,3))
X_triangle[0:3,0] = [-width, -height, f_scale]
X_triangle[0:3,1] = [0, -2*height, f_scale]
X_triangle[0:3,2] = [width, -height, f_scale]
# draw camera
X_center1 = np.ones((4,2))
X_center1[0:3,0] = [0, 0, 0]
X_center1[0:3,1] = [-width, height, f_scale]
X_center2 = np.ones((4,2))
X_center2[0:3,0] = [0, 0, 0]
X_center2[0:3,1] = [width, height, f_scale]
X_center3 = np.ones((4,2))
X_center3[0:3,0] = [0, 0, 0]
X_center3[0:3,1] = [width, -height, f_scale]
X_center4 = np.ones((4,2))
X_center4[0:3,0] = [0, 0, 0]
X_center4[0:3,1] = [-width, -height, f_scale]
# draw camera frame axis
X_frame1 = np.ones((4,2))
X_frame1[0:3,0] = [0, 0, 0]
X_frame1[0:3,1] = [f_scale/2, 0, 0]
X_frame2 = np.ones((4,2))
X_frame2[0:3,0] = [0, 0, 0]
X_frame2[0:3,1] = [0, f_scale/2, 0]
X_frame3 = np.ones((4,2))
X_frame3[0:3,0] = [0, 0, 0]
X_frame3[0:3,1] = [0, 0, f_scale/2]
if draw_frame_axis:
return [X_img_plane, X_triangle, X_center1, X_center2, X_center3, X_center4, X_frame1, X_frame2, X_frame3]
else:
return [X_img_plane, X_triangle, X_center1, X_center2, X_center3, X_center4]
def _create_board_model(extrinsics, board_width, board_height, square_size, draw_frame_axis=False):
# util function
width = board_width*square_size
height = board_height*square_size
# draw calibration board
X_board = np.ones((4,5))
#X_board_cam = np.ones((extrinsics.shape[0],4,5))
X_board[0:3,0] = [0,0,0]
X_board[0:3,1] = [width,0,0]
X_board[0:3,2] = [width,height,0]
X_board[0:3,3] = [0,height,0]
X_board[0:3,4] = [0,0,0]
# draw board frame axis
X_frame1 = np.ones((4,2))
X_frame1[0:3,0] = [0, 0, 0]
X_frame1[0:3,1] = [height/2, 0, 0]
X_frame2 = np.ones((4,2))
X_frame2[0:3,0] = [0, 0, 0]
X_frame2[0:3,1] = [0, height/2, 0]
X_frame3 = np.ones((4,2))
X_frame3[0:3,0] = [0, 0, 0]
X_frame3[0:3,1] = [0, 0, height/2]
if draw_frame_axis:
return [X_board, X_frame1, X_frame2, X_frame3]
else:
return [X_board]
def _draw_camera_boards(ax, camera_matrix, cam_width, cam_height, scale_focal,
extrinsics, board_width, board_height, square_size,
patternCentric):
# util function
min_values = np.zeros((3,1))
min_values = np.inf
max_values = np.zeros((3,1))
max_values = -np.inf
if patternCentric:
X_moving = _create_camera_model(camera_matrix, cam_width, cam_height, scale_focal)
X_static = _create_board_model(extrinsics, board_width, board_height, square_size)
else:
X_static = _create_camera_model(camera_matrix, cam_width, cam_height, scale_focal, True)
X_moving = _create_board_model(extrinsics, board_width, board_height, square_size)
cm_subsection = linspace(0.0, 1.0, extrinsics.shape[0])
colors = [ cm.jet(x) for x in cm_subsection ]
for i in range(len(X_static)):
X = np.zeros(X_static[i].shape)
for j in range(X_static[i].shape[1]):
X[:,j] = _transform_to_matplotlib_frame(np.eye(4), X_static[i][:,j])
ax.plot3D(X[0,:], X[1,:], X[2,:], color='r')
min_values = np.minimum(min_values, X[0:3,:].min(1))
max_values = np.maximum(max_values, X[0:3,:].max(1))
for idx in range(extrinsics.shape[0]):
R, _ = cv2.Rodrigues(extrinsics[idx,0:3])
cMo = np.eye(4,4)
cMo[0:3,0:3] = R
cMo[0:3,3] = extrinsics[idx,3:6]
for i in range(len(X_moving)):
X = np.zeros(X_moving[i].shape)
for j in range(X_moving[i].shape[1]):
X[0:4,j] = _transform_to_matplotlib_frame(cMo, X_moving[i][0:4,j], patternCentric)
ax.plot3D(X[0,:], X[1,:], X[2,:], color=colors[idx])
min_values = np.minimum(min_values, X[0:3,:].min(1))
max_values = np.maximum(max_values, X[0:3,:].max(1))
return min_values, max_values
def visualize_views(camera_matrix,
rvecs,
tvecs,
board_width,
board_height,
square_size,
cam_width = 64/2,
cam_height = 48/2,
scale_focal = 40,
patternCentric = False,
figsize = (8,8),
save_dir = None
):
"""
Visualizes the pattern centric or the camera centric views of chess board
using the above util functions
Keyword Arguments
camera_matrix --numpy.array: intrinsic camera matrix (No default)
rvecs : --list of rvecs from cv2.calibrateCamera()
tvecs : --list of tvecs from cv2.calibrateCamera()
board_width --int: the chessboard width (no default)
board_height --int: the chessboard height (no default)
square_size --int: the square size of each chessboard square in mm
cam_width --float: Width/2 of the displayed camera (Default 64/2)
it is recommended to leave this argument to default
cam_height --float: Height/2 of the displayed camera (Default (48/2))
it is recommended to leave this argument to default
scale_focal --int: Value to scale the focal length (Default 40)
it is recommended to leave this argument to default
pattern_centric --bool: Whether to visualize the pattern centric or the
camera centric (Default False)
fig_size --tuple: The size of figure to display (Default (8,8))
it is recommended to leave this argument to default
save_dir --str: optional path to a saving directory to save the
generated plot (Default None)
Does not return anything
"""
i = 0
extrinsics = np.zeros((len(rvecs),6))
for rot,trans in zip(rvecs,tvecs):
extrinsics[i]=np.append(rot.flatten(),trans.flatten())
i+=1
#The extrinsics matrix is of shape (N,6) (No default)
#Where N is the number of board patterns
#the first 3 columns are rotational vectors
#the last 3 columns are translational vectors
fig = plt.figure(figsize=figsize)
ax = fig.gca(projection='3d')
ax.set_aspect("equal")
min_values, max_values = _draw_camera_boards(ax, camera_matrix, cam_width, cam_height,
scale_focal, extrinsics, board_width,
board_height, square_size, patternCentric)
X_min = min_values[0]
X_max = max_values[0]
Y_min = min_values[1]
Y_max = max_values[1]
Z_min = min_values[2]
Z_max = max_values[2]
max_range = np.array([X_max-X_min, Y_max-Y_min, Z_max-Z_min]).max() / 2.0
mid_x = (X_max+X_min) * 0.5
mid_y = (Y_max+Y_min) * 0.5
mid_z = (Z_max+Z_min) * 0.5
ax.set_xlim(mid_x - max_range, mid_x + max_range)
ax.set_ylim(mid_y - max_range, mid_y + max_range)
ax.set_zlim(mid_z - max_range, mid_z + max_range)
ax.set_xlabel('x')
ax.set_ylabel('z')
ax.set_zlabel('-y')
if patternCentric:
ax.set_title('Pattern Centric View')
if save_dir:
plt.savefig(os.path.join(save_dir,"pattern_centric_view.png"))
else:
ax.set_title('Camera Centric View')
if save_dir:
plt.savefig(os.path.join(save_dir,"camera_centric_view.png"))
plt.show()
#################################################################################################################
if __name__ == "__main__":
## Cannot be used for custom calibration pattern
parser = argparse.ArgumentParser(description="Camera_Calibration_API. Saves the calibration results in a pickle file \n NOTE: USE THE API AS IMPORTABLE MODULE FOR ADDED CONTROL",formatter_class=RawTextHelpFormatter)
parser.add_argument("--images_dir",help="Path to the directory containing calibration images (no / in end)",type=str,metavar='', default=None)
parser.add_argument("-pt","--pattern_type",help="The pattern type for calibration",type=str,metavar='',default=None)
parser.add_argument("-pr","--pattern_rows",help="num of rows in pattern",type=int,metavar='',default = 0)
parser.add_argument("-pc","--pattern_columns",help="num of columns in pattern",type=int,metavar='',default = 0)
parser.add_argument("-d","--distance",help="The distance between points in world units",type=float,metavar='',default = 1.0)
parser.add_argument("--debug",help="path to directory for saving images",type=str,metavar='',default=None)
parser.add_argument("-cw","--cam_width",help="width of cam for visualization",type=float,metavar='',default=1)
parser.add_argument("-ch","--cam_height",help="height of cam for visualization",type=float,metavar='',default=0.5)
parser.add_argument("--save",help="path to save the results as a pickle file",type=str,metavar='',default="./results.pickle")
args=parser.parse_args()
pattern_types = ["chessboard","symmetric_circles","asymmetric_circles"]
if args.images_dir == None or args.pattern_type == None or args.pattern_rows == 0 or args.pattern_columns == 0:
raise ValueError("Give values for the first 4 arguments")
assert args.pattern_type in pattern_types, "The --pattern_type must be one of {}. 'custom' pattern is not supported in terminal mode".format(pattern_types)
file_types = ("*.jpg","*.jpeg","*.JPEG","*.png","*.PNG","*.bmp","*.BMP")
images_path_list = []
for file_type in file_types:
images_path_list.extend(glob.glob(os.path.join(args.images_dir,file_type)))
calibration_object = Camera_Calibration_API(pattern_type = args.pattern_type,
pattern_rows = args.pattern_rows,
pattern_columns = args.pattern_columns,
distance_in_world_units = args.distance,
debug_dir = args.debug
)
results = calibration_object.calibrate_camera(images_path_list)
with open(args.save,"wb") as f:
pickle.dump(results,f)
calibration_object.visualize_calibration_boards(cam_width=args.cam_width,
cam_height=args.cam_height)