-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconfig.yml
60 lines (51 loc) · 1.61 KB
/
config.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
model: # AR{ESNet model parameters
input_shape: [256, 256]
aenc: "arpesnet"
kwargs:
kernel_size: 11
kernel_decay: 2
n_layers: 1
start_channels: 4
max_channels: 32
n_blocks: 5
input_shape: [256, 256]
relu: PReLU
relu_kwargs: {num_parameters: 1}
preprocessing: # preprocessing steps, applied in order, before training
Resize: [256, 256] # should be the same as model input_shape
NormalizeMinMax: [0,100]
training_augmentations: # augmentations applied during training, in order
RandomResizedCrop:
size: [256, 256]
scale: [0.8, 1.] #[0.6, 1.0]
ratio: [0.8, 1.2] # [0.5, 1.5]
Flip:
p: 0.5
NormalizeMinMax: [0,100]
noise_augmentations: # augmentations applied during training, in order
SetRandomPoissonExposure: [50_000,100_000_000]
NormalizeMinMax: [0,100]
validation_augmentations:
Resize: [256, 256]
NormalizeMinMax: [0,100]
loss: # loss function and parameters
criteria: ['mse'] # 'mse','psnr','ssim'... or list of them
weights: [1.0] # weights for each loss function
contractive: False # contractive autoencoder loss
lam: 0.0001 # weight for contractive loss
optimizer: # optimizer and parameters
name: 'Adam'
kwargs:
lr: 0.001
weight_decay: 0.0
train: # training parameters
split_ratio: [0.8,0.2] # train/test split
batch_size: 32 # batch size
n_epochs: 1000 # number of epochs
shuffle: True
drop_last: True
denoiser: False
device: # device settings
seed: 0 # random seed
use_gpu: True # use GPU if available
copy_to_cuda: True # copy data to GPU, if False, data is copied to GPU on-the-fly and pin_memory is enabled