diff --git a/pyart/aux_io/__init__.py b/pyart/aux_io/__init__.py index eb4c4d5192..b2074a2f69 100644 --- a/pyart/aux_io/__init__.py +++ b/pyart/aux_io/__init__.py @@ -14,6 +14,7 @@ """ from .arm_vpt import read_kazr # noqa +from .arm_vpt import read_mmcr # noqa from .d3r_gcpex_nc import read_d3r_gcpex_nc # noqa from .edge_netcdf import read_edge_netcdf # noqa from .gamic_hdf5 import read_gamic # noqa diff --git a/pyart/aux_io/arm_vpt.py b/pyart/aux_io/arm_vpt.py index 341dce7bf3..cf34e84e75 100644 --- a/pyart/aux_io/arm_vpt.py +++ b/pyart/aux_io/arm_vpt.py @@ -218,3 +218,259 @@ def read_kazr( elevation, instrument_parameters=instrument_parameters, ) + + +def read_mmcr( + filename, + field_names=None, + additional_metadata=None, + file_field_names=False, + exclude_fields=None, + include_fields=None, + mode_names=None, + mode_to_extract=None, +): + """ + Read millimeter wavelength cloud radar (MMCR) b1 NetCDF ingest data. + + Parameters + ---------- + filename : str + Name of NetCDF file to read data from. + field_names : dict, optional + Dictionary mapping field names in the file names to radar field names. + Unlike other read functions, fields not in this dictionary or having a + value of None are still included in the radar.fields dictionary, to + exclude them use the `exclude_fields` parameter. Fields which are + mapped by this dictionary will be renamed from key to value. + additional_metadata : dict of dicts, optional + This parameter is not used, it is included for uniformity. + file_field_names : bool, optional + True to force the use of the field names from the file in which + case the `field_names` parameter is ignored. False will use to + `field_names` parameter to rename fields. + exclude_fields : list or None, optional + List of fields to exclude from the radar object. This is applied + after the `file_field_names` and `field_names` parameters. Set + to None to include all fields specified by include_fields. + include_fields : list or None, optional + List of fields to include from the radar object. This is applied + after the `file_field_names` and `field_names` parameters. Set + to None to include all fields not specified by exclude_fields. + mode_names: dict + Keys are mode dimension indices. Values are the corresponding mode + abbreviations and prt. Using default values if None. + mode_to_extract: str or None + Abbreviation of mode to extract. + Extracting all data for all modes if None. + + Returns + ------- + radar_out : Radar or dict of Radar objects + If `mode_to_extract` is None, returns a dict with keys representing operated modes and + values the corresponding `Radar` object. + If `mode_to_extract` is specified returning the `Radar` object corresponding to the that + mode. + + """ + + if mode_names is None: + mode_names = { + 1: {"name": "bl", "prt": 1.0 / 68e-6}, + 2: {"name": "ci", "prt": 1.0 / 126e-6}, + 3: {"name": "ge", "prt": 1.0 / 106e-6}, + 4: {"name": "pr", "prt": 1.0 / 106e-6} + } # For PRT, see MMCR handbook (https://doi.org/10.2172/948372) + + # create metadata retrieval object + filemetadata = FileMetadata( + "cfradial", + field_names, + additional_metadata, + file_field_names, + exclude_fields, + include_fields, + ) + + # read the data + ncobj = netCDF4.Dataset(filename) + ncvars = ncobj.variables + + # 4.1 Global attribute -> move to metadata dictionary + metadata = {k: getattr(ncobj, k) for k in ncobj.ncattrs()} + metadata["n_gates_vary"] = "false" + + # 4.2 Dimensions (do nothing) + + # 4.3 Global variable -> move to metadata dictionary + if "volume_number" in ncvars: + metadata["volume_number"] = int(ncvars["volume_number"][:]) + else: + metadata["volume_number"] = 0 + + global_vars = { + "platform_type": "fixed", + "instrument_type": "radar", + "primary_axis": "axis_z", + } + # ignore time_* global variables, these are calculated from the time + # variable when the file is written. + for var, default_value in global_vars.items(): + if var in ncvars: + metadata[var] = str(netCDF4.chartostring(ncvars[var][:])) + else: + metadata[var] = default_value + + # 4.4 coordinate variables -> create attribute dictionaries (`_range` is generated in loop below) + + # 4.5 Ray dimension variables + + # 4.6 Location variables -> create attribute dictionaries + # the only difference in this section to cfradial.read_cfradial is the + # minor variable name differences: + # latitude -> lat + # longitude -> lon + # altitdue -> alt + latitude = cfradial._ncvar_to_dict(ncvars["lat"]) + longitude = cfradial._ncvar_to_dict(ncvars["lon"]) + altitude = cfradial._ncvar_to_dict(ncvars["alt"]) + + # 4.7 Sweep variables -> create atrribute dictionaries + # this is the section that needed the most work since the initial NetCDF + # file did not contain any sweep information + sweep_number = filemetadata("sweep_number") + sweep_number["data"] = np.array([0], dtype=np.int32) + + sweep_mode = filemetadata("sweep_mode") + sweep_mode["data"] = np.array(["vertical_pointing"], dtype=str) + + fixed_angle = filemetadata("fixed_angle") + fixed_angle["data"] = np.array([90.0], dtype=np.float32) + + sweep_start_ray_index = filemetadata("sweep_start_ray_index") + sweep_start_ray_index["data"] = np.array([0], dtype=np.int32) + + # first sweep mode determines scan_type + # this module is specific to vertically-pointing data + scan_type = "vpt" + + # 4.8 Sensor pointing variables -> create attribute dictionaries + # this section also required some changes since the initial NetCDF did not + # contain any sensor pointing variables + + # 4.9 Moving platform geo-reference variables + + # 4.10 Moments field data variables -> field attribute dictionary + # all variables with dimensions of 'time', 'heights' are fields + keys = [k for k, v in ncvars.items() if v.dimensions == ("time", "heights")] + + # Determine if one or more modes are to be extracted and generate Radar object(s) output + if mode_to_extract is None: + modes = np.unique(ncvars["ModeNum"]) + radar_out = {} + else: + modes = [key for key in mode_names.keys() if mode_names[key]["name"] == mode_to_extract] + for mode in modes: + mode_sample_indices = ncvars["ModeNum"] == np.array(mode) + active_range = ncvars["heights"][mode, :] > 0.0 + range_arr = ncvars["heights"][mode, active_range] - altitude['data'] + time = cfradial._ncvar_to_dict(ncvars["time"]) + time['data'] = ncvars["time"][mode_sample_indices] + _range = { + 'long_name': 'Range (center of radar sample volume)', + 'units': 'm AGL', + 'missing_value': -9999.0, + 'data': range_arr + } + + fields = {} + for key in keys: + field_name = filemetadata.get_field_name(key) + if field_name is None: + if exclude_fields is not None and key in exclude_fields: + continue + if include_fields is not None and key not in include_fields: + continue + field_name = key + + d = { + k: getattr(ncvars[key], k) + for k in ncvars[key].ncattrs() + if k not in ["scale_factor", "add_offset"] + } + d['data'] = ncvars[key][mode_sample_indices, active_range] + fields[field_name] = d + + # 4.5 instrument_parameters sub-convention -> instrument_parameters dict + # this section needed multiple changes and/or additions since the + # instrument parameters were primarily located in the global attributes + # this section is likely still incomplete + + sweep_end_ray_index = filemetadata("sweep_end_ray_index") + sweep_end_ray_index["data"] = np.array([time['data'].size - 1], dtype=np.int32) + + azimuth = filemetadata("azimuth") + azimuth["data"] = 0.0 * np.ones(time['data'].size, dtype=np.float32) + + elevation = filemetadata("elevation") + elevation["data"] = 90.0 * np.ones(time['data'].size, dtype=np.float32) + + omega = float(ncobj.radar_operating_frequency.split()[0]) + frequency = filemetadata("frequency") + frequency["data"] = np.array([omega / 1e9], dtype=np.float32) + + prt_mode = filemetadata("prt_mode") + prt_mode["data"] = np.array(["fixed"], dtype=str) + + prt = filemetadata("prt") + prt["data"] = np.full(time['data'].size, mode_names[mode]["prt"], dtype=np.float32) + + nyquist_velocity = filemetadata("nyquist_velocity") + nyquist_velocity["data"] = np.full(time['data'].size, ncvars["NyquistVelocity"][mode], dtype=np.float32) + + n_samples = filemetadata("n_samples") + n_samples["data"] = np.full(time['data'].size, ncvars["NumSpectralAverages"][mode], dtype=np.float32) + + # 4.6 radar_parameters sub-convention -> instrument_parameters dict + # this section needed multiple changes and/or additions since the + # radar instrument parameters were primarily located in the global + # attributes + # this section is likely still incomplete + instrument_parameters = { + "frequency": frequency, + "prt_mode": prt_mode, + "prt": prt, + "nyquist_velocity": nyquist_velocity, + "n_samples": n_samples, + } + + # 4.7 lidar_parameters sub-convention -> skip + # 4.8 radar_calibration sub-convention -> skip + + Radar_tmp = Radar( + time, + _range, + fields, + metadata, + scan_type, + latitude, + longitude, + altitude, + sweep_number, + sweep_mode, + fixed_angle, + sweep_start_ray_index, + sweep_end_ray_index, + azimuth, + elevation, + instrument_parameters=instrument_parameters, + ) + if mode_to_extract is None: + radar_out[mode_names[mode]["name"]] = Radar_tmp + else: + radar_out = Radar_tmp + + # close NetCDF object + ncobj.close() + + return radar_out \ No newline at end of file