-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
350 lines (333 loc) · 12.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import os
import math
import pandas as pd
import numpy as np
from datasets import Dataset
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from transformers import AdamW, AutoTokenizer, get_scheduler
from transformers.data.data_collator import default_data_collator
from tqdm import tqdm
import collections
from typing import Tuple
from datasets.utils import disable_progress_bar
from model import make_model
from utils import AverageMeter, jaccard, seed_everything, parse_args_train
from processing import (
prepare_train_features,
prepare_validation_features,
postprocess_qa_predictions,
convert_answers,
filter_pred_strings
)
from data import get_extra_data
os.environ["TOKENIZERS_PARALLELISM"] = "false"
disable_progress_bar()
class Trainer:
def __init__(
self,
model_name: str,
fold: int,
train_set: Dataset,
valid_set: Dataset,
tokenizer: AutoTokenizer,
model_type: str = "hf",
learning_rate: float = 3e-5,
weight_decay: float = 0.1,
epochs: int = 1,
train_batch_size: int = 4,
valid_batch_size: int = 32,
eval_step: int = 1500,
max_length: int = 384,
max_answer_length: int = 30,
doc_stride: int = 128,
save_path: str = "output",
scheduler: str = "cosine",
warmup: float = 0.05,
adam_epsilon: float = 1e-8,
early_stopping: int = 3,
fp16: bool = False,
accumulation_steps: int = 1,
dataloader_workers: int = 4,
pad_on_right: bool = True,
model_weights: str = None,
pretrain: bool = False
) -> None:
self.model = make_model(model_name, model_type, model_weights)
self.model.to("cuda")
self.fold = fold
self.train_set = train_set
self.valid_set = valid_set
self.tokenizer = tokenizer
self.learning_rate = learning_rate
self.weight_decay = weight_decay
self.epochs = epochs
self.train_batch_size = train_batch_size
self.valid_batch_size = valid_batch_size
self.max_length = max_length
self.max_answer_length = max_answer_length
self.doc_stride = doc_stride
if pretrain:
file_name = f"{model_name.replace('/', '-')}_pretrain.bin"
else:
file_name = f"{model_name.replace('/', '-')}_fold_{fold}.bin"
self.save_path = os.path.join(save_path, file_name)
self.best_jaccard = 0
self.current_jaccard = 0
self.early_stopping_counter = 0
self.early_stopping_limit = early_stopping
self.optimizer = self._make_optimizer(learning_rate, adam_epsilon, weight_decay)
total_steps = math.ceil(len(train_set) * epochs / train_batch_size / accumulation_steps)
warmup_steps = total_steps * warmup
self.scheduler = get_scheduler(scheduler, self.optimizer, warmup_steps, total_steps)
self.eval_step = eval_step
self.accumulation_steps = accumulation_steps
self.dataloader_workers = dataloader_workers
self.fp16 = fp16
if self.fp16:
self.scaler = torch.cuda.amp.GradScaler()
self.pad_on_right = pad_on_right
self._prepare_validation_features()
self.loss_score = AverageMeter()
def train(self) -> None:
self.model.train()
dataloader = DataLoader(
self.train_set,
batch_size=self.train_batch_size,
shuffle=True,
num_workers=self.dataloader_workers,
pin_memory=True,
collate_fn=default_data_collator
)
for epoch in range(1, self.epochs + 1):
self.loss_score.reset()
self.optimizer.zero_grad()
end = False
with tqdm(total=len(dataloader), unit="batches") as tepoch:
tepoch.set_description(f"epoch {epoch}")
for step, batch in enumerate(dataloader):
batch = self._to_device(batch)
if self.fp16:
with torch.cuda.amp.autocast():
output = self.model(**batch)
loss = output.loss
loss = loss / self.accumulation_steps
self.scaler.scale(loss).backward()
else:
output = self.model(**batch)
loss = output.loss
loss = loss / self.accumulation_steps
loss.backward()
if (step + 1) % self.accumulation_steps == 0:
if self.fp16:
self.scaler.step(self.optimizer)
self.scaler.update()
else:
self.optimizer.step()
self.optimizer.zero_grad()
if self.scheduler:
self.scheduler.step()
self.loss_score.update(output.loss.item(), self.train_batch_size)
if step != 0 and step % self.eval_step == 0:
end = self.evaluate()
self.loss_score.reset()
if end:
break
lr = f"{self.scheduler.get_last_lr()[0]:0.3e}"
metrics = {"loss": self.loss_score.avg, "lr": lr}
tepoch.set_postfix(metrics)
tepoch.update(1)
if not end:
end = self.evaluate()
if end:
break
print(f"End of epoch {epoch} | Best Validation Jaccard {self.best_jaccard}")
def evaluate(self) -> bool:
predictions = self.predict(self.valid_features_small)
self.current_jaccard = self._calculate_validation_jaccard(
self.valid_set,
self.valid_features,
predictions,
)
if self.current_jaccard > self.best_jaccard:
print(f"Score improved from {self.best_jaccard} to {self.current_jaccard}.")
self.best_jaccard = self.current_jaccard
torch.save(self.model.state_dict(), self.save_path)
self.early_stopping_counter = 0
else:
self.early_stopping_counter += 1
print(
f"{self.current_jaccard} is not an improvement."
f" Early stopping {self.early_stopping_counter}/{self.early_stopping_limit}"
)
if self.early_stopping_counter >= self.early_stopping_limit:
print("Early stopping limit reached. Terminating.")
return True
else:
return False
@torch.no_grad()
def predict(self, dataset: Dataset) -> Tuple[np.ndarray, np.ndarray]:
self.model.eval()
dataloader = DataLoader(
dataset,
batch_size=self.valid_batch_size,
shuffle=False,
num_workers=self.dataloader_workers,
pin_memory=True,
collate_fn=default_data_collator
)
start_logits = []
end_logits = []
for batch in dataloader:
batch = self._to_device(batch)
output = self.model(**batch)
start_logits.append(output.start_logits.cpu().numpy())
end_logits.append(output.end_logits.cpu().numpy())
return np.vstack(start_logits), np.vstack(end_logits)
def _prepare_validation_features(self):
self.valid_features = self.valid_set.map(
prepare_validation_features,
fn_kwargs={
"tokenizer": self.tokenizer,
"pad_on_right": self.pad_on_right,
"max_length": self.max_length,
"doc_stride": self.doc_stride
},
batched=True,
remove_columns=self.valid_set.column_names
)
self.valid_features_small = self.valid_features.map(
lambda example: example, remove_columns=['example_id', 'offset_mapping']
)
self.valid_features_small.set_format(
type='torch',
columns=["input_ids", "attention_mask"]
)
self.example_id_to_index = {k: i for i, k in enumerate(self.valid_set["id"])}
features_per_example = collections.defaultdict(list)
for i, feature in enumerate(self.valid_features):
features_per_example[self.example_id_to_index[feature["example_id"]]].append(i)
def _calculate_validation_jaccard(
self,
dataset: Dataset,
features: Dataset,
raw_predictions: Tuple[np.ndarray, np.ndarray],
) -> float:
final_predictions = postprocess_qa_predictions(
dataset,
features,
raw_predictions,
self.tokenizer,
self.max_answer_length
)
references = [
{"id": ex["id"], "answer": ex["answers"]['text'][0]}
for ex in dataset
]
res = pd.DataFrame(references)
res['prediction'] = final_predictions.PredictionString
res["prediction"] = filter_pred_strings(res.prediction)
res['jaccard'] = res[['answer', 'prediction']].apply(jaccard, axis=1)
return res.jaccard.mean()
def _to_device(self, batch, device="cuda"):
for k, v in batch.items():
batch[k] = v.to(device)
return batch
def _make_optimizer(
self,
learning_rate: float,
adam_epsilon: float,
weight_decay: float
) -> AdamW:
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [
p for n, p in self.model.named_parameters()
if not any(nd in n for nd in no_decay)
],
"weight_decay": weight_decay,
},
{
"params": [
p for n, p in self.model.named_parameters()
if any(nd in n for nd in no_decay)
],
"weight_decay": 0.0,
},
]
return AdamW(
optimizer_grouped_parameters,
lr=learning_rate,
eps=adam_epsilon,
correct_bias=True
)
if __name__ == "__main__":
config = parse_args_train()
if config.fold is None:
raise ValueError("No fold chosen. Use --fold.")
seed_everything(config.seed)
tokenizer = AutoTokenizer.from_pretrained(config.model)
pad_on_right = tokenizer.padding_side == "right"
data = pd.read_csv(config.data_path, encoding="utf-8")
train = data.loc[data.kfold != config.fold]
valid = data.loc[data.kfold == config.fold]
if config.use_extra_data:
extra_data = get_extra_data(config.extra_data_dir)
train = pd.concat([train, extra_data])
train['answers'] = train.loc[:, ['answer_start', 'answer_text']].apply(
convert_answers,
axis=1
)
valid['answers'] = valid.loc[:, ['answer_start', 'answer_text']].apply(
convert_answers,
axis=1
)
train_dataset = Dataset.from_pandas(train)
valid_dataset = Dataset.from_pandas(valid)
tokenized_train_ds = train_dataset.map(
prepare_train_features,
batched=True,
remove_columns=train_dataset.column_names,
fn_kwargs={
"tokenizer": tokenizer,
"max_length": config.max_length,
"doc_stride": config.doc_stride,
"pad_on_right": pad_on_right
}
)
tokenized_train_ds.set_format(
type='torch',
columns=['input_ids', 'attention_mask', 'start_positions', 'end_positions']
)
if not os.path.exists(config.save_path):
os.makedirs(config.save_path)
trainer = Trainer(
config.model,
config.fold,
tokenized_train_ds,
valid_dataset,
tokenizer,
model_weights=config.model_weights,
model_type=config.model_type,
learning_rate=config.learning_rate,
weight_decay=config.weight_decay,
epochs=config.epochs,
train_batch_size=config.train_batch_size,
valid_batch_size=config.valid_batch_size,
eval_step=config.eval_step,
max_length=config.max_length,
max_answer_length=config.max_answer_length,
doc_stride=config.doc_stride,
save_path=config.save_path,
scheduler=config.scheduler,
warmup=config.warmup,
adam_epsilon=config.adam_epsilon,
early_stopping=config.early_stopping,
fp16=config.fp16,
accumulation_steps=config.accumulation_steps,
dataloader_workers=config.dataloader_workers,
pad_on_right=pad_on_right
)
trainer.train()