-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathnodes.py
504 lines (452 loc) · 20.9 KB
/
nodes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
import os
import torch
import shutil
import audiotsm
import logging
import audiotsm.io.wav
from time import time as ttime
import folder_paths
from pydub import AudioSegment
from tools.i18n.i18n import I18nAuto
from srt import parse as SrtPare
from .inference import dict_language,get_tts_wav
from .finetune import open1abc,default_batch_size,open1Ba,open1Bb
i18n = I18nAuto()
parent_directory = os.path.dirname(os.path.abspath(__file__))
input_path = folder_paths.get_input_directory()
out_path = folder_paths.get_output_directory()
language_list = [i18n("中文"), i18n("英文"), i18n("日文"), i18n("中英混合"), i18n("日英混合"), i18n("多语种混合")]
weights_path = os.path.join(parent_directory,"pretrained_models")
SoVITS_weight_root = os.path.join(out_path,"sovits_weights")
os.makedirs(SoVITS_weight_root,exist_ok=True)
GPT_weight_root = os.path.join(out_path,"gpt_weights")
os.makedirs(GPT_weight_root,exist_ok=True)
sovits_files = sorted(os.listdir(SoVITS_weight_root),reverse=True)
gpt_files = sorted(os.listdir(GPT_weight_root),reverse=True)
class GPT_SOVITS_TTS:
@classmethod
def INPUT_TYPES(s):
how_to_cuts = [i18n("不切"), i18n("凑四句一切"), i18n("凑50字一切"), i18n("按中文句号。切"), i18n("按英文句号.切"), i18n("按标点符号切"), ]
return {"required":
{
"renfer_audio":("AUDIO",),
"refer_srt":("SRT",),
"refer_language":(language_list,{
"default": i18n("中文")
}),
"text": ("STRING",{
"default": "你好啊!世界",
"multiline": True
}),
"text_language":(language_list,{
"default": i18n("中文")
}),
"gpt_weight":(gpt_files,),
"sovits_weight":(sovits_files,),
"how_to_cut":(how_to_cuts,{
"default": i18n("凑四句一切")
}),
"top_k":("INT",{
"default":20,
"min":1,
"max": 100,
"step": 1,
"display": "slider"
}),
"top_p":("FLOAT",{
"default":1,
"min":0,
"max": 1,
"step": 0.05,
"display": "slider"
}),
"temperature":("FLOAT",{
"default":1,
"min":0,
"max": 1,
"step": 0.05,
"display": "slider"
}),
}
}
CATEGORY = "AIFSH_GPT_SOVITS"
RETURN_TYPES = ('AUDIO',)
OUTPUT_NODE = False
FUNCTION = "get_tts_wav"
def get_tts_wav(self,renfer_audio,refer_srt,refer_language,
text,text_language,gpt_weight,sovits_weight,
how_to_cut,top_k,top_p,temperature):
with open(refer_srt, 'r', encoding="utf-8") as file:
file_content = file.read()
prompt_language = dict_language[refer_language]
dot_ = "。" if 'zh' in prompt_language else '.'
prompt_text = f'{dot_}'.join([sub.content for sub in list(SrtPare(file_content))])
print(f"prompt_text:{prompt_text}")
outfile = os.path.join(out_path, f"{ttime()}_gpt_sovits_tts.wav")
gpt_weight = os.path.join(GPT_weight_root, gpt_weight)
sovits_weight = os.path.join(SoVITS_weight_root, sovits_weight)
get_tts_wav(renfer_audio,prompt_text,prompt_language,
text,text_language,how_to_cut,top_k,top_p,temperature,
gpt_weight,sovits_weight,outfile)
return (outfile,)
class GPT_SOVITS_INFER:
@classmethod
def INPUT_TYPES(s):
how_to_cuts = [i18n("不切"), i18n("凑四句一切"), i18n("凑50字一切"), i18n("按中文句号。切"), i18n("按英文句号.切"), i18n("按标点符号切"), ]
return {"required":
{
"renfer_audio":("AUDIO",),
"refer_srt":("SRT",),
"if_aliginment":("BOOLEAN",{
"default": False
}),
"if_mutiple_speaker":("BOOLEAN",{
"default": False
}),
"refer_language":(language_list,{
"default": i18n("中文")
}),
"text_srt":("SRT",),
"text_language":(language_list,{
"default": i18n("中文")
}),
"gpt_weight":(gpt_files,),
"sovits_weight":(sovits_files,),
"how_to_cut":(how_to_cuts,{
"default": i18n("不切")
}),
"top_k":("INT",{
"default":20,
"min":1,
"max": 100,
"step": 1,
"display": "slider"
}),
"top_p":("FLOAT",{
"default":1,
"min":0,
"max": 1,
"step": 0.05,
"display": "slider"
}),
"temperature":("FLOAT",{
"default":1,
"min":0,
"max": 1,
"step": 0.05,
"display": "slider"
}),
}
}
CATEGORY = "AIFSH_GPT_SOVITS"
RETURN_TYPES = ('AUDIO',)
OUTPUT_NODE = False
FUNCTION = "get_tts_wav"
def get_tts_wav(self,renfer_audio,refer_srt,if_aliginment,
if_mutiple_speaker,refer_language,text_srt,text_language,
gpt_weight,sovits_weight,how_to_cut,top_k,top_p,temperature):
prompt_language = dict_language[refer_language]
refer_srt_path = folder_paths.get_annotated_filepath(refer_srt)
text_srt_path = folder_paths.get_annotated_filepath(text_srt)
with open(refer_srt_path, 'r', encoding="utf-8") as file:
refer_file_content = file.read()
with open(text_srt_path, 'r', encoding="utf-8") as file:
text_file_content = file.read()
refer_wav_root = os.path.join(input_path, "gpt_sovits_infer")
os.makedirs(refer_wav_root,exist_ok=True)
audio_path = folder_paths.get_annotated_filepath(renfer_audio)
audio_seg = AudioSegment.from_file(audio_path)
new_audio_seg = AudioSegment.silent(0)
refer_subtitles = list(SrtPare(refer_file_content))
for i, (refer_sub, text_sub) in enumerate(zip(refer_subtitles, list(SrtPare(text_file_content)))):
start_time = refer_sub.start.total_seconds() * 1000
end_time = refer_sub.end.total_seconds() * 1000
if i == 0:
new_audio_seg += audio_seg[:start_time]
refer_wav_seg = audio_seg[start_time:end_time]
refer_wav = os.path.join(refer_wav_root, f"{i}_gpt_sovits_refer.wav")
refer_wav_seg.export(refer_wav, format='wav')
outfile = os.path.join(refer_wav_root, f"{i}_gpt_sovits_infer.wav")
text = text_sub.content
refer_text = refer_sub.content
if if_mutiple_speaker:
speaker_name = f"speaker_{text[0]}"
text = text[1:]
refer_text = refer_text[1:]
gpt_weight = sorted([f for f in os.listdir(GPT_weight_root) if speaker_name in f], key=lambda x:x[-8:-5])[-1]
gpt_weight = os.path.join(GPT_weight_root, gpt_weight)
sovits_weight = sorted([f for f in os.listdir(SoVITS_weight_root) if speaker_name in f])[-1]
sovits_weight = os.path.join(SoVITS_weight_root, sovits_weight)
print(f"gpt_weight:\t{gpt_weight}\nsovits_weight:\t{sovits_weight}")
else:
gpt_weight = os.path.join(GPT_weight_root, gpt_weight)
sovits_weight = os.path.join(SoVITS_weight_root, sovits_weight)
get_tts_wav(refer_wav,refer_text,prompt_language,
text,text_language,how_to_cut,top_k,top_p,temperature,
gpt_weight,sovits_weight,outfile)
text_audio = AudioSegment.from_file(outfile)
text_audio_dur_time = text_audio.duration_seconds * 1000
if i < len(refer_subtitles) - 1:
nxt_start = refer_subtitles[i+1].start.total_seconds() * 1000
dur_time = nxt_start - start_time
else:
org_dur_time = audio_seg.duration_seconds * 1000
dur_time = org_dur_time - start_time
ratio = text_audio_dur_time / dur_time
if text_audio_dur_time > dur_time:
if if_aliginment:
tmp_audio = self.map_vocal(audio=text_audio,ratio=ratio,dur_time=dur_time,
wav_name=f"map_{i}_refer.wav",temp_folder=refer_wav_root)
tmp_audio += AudioSegment.silent(dur_time - tmp_audio.duration_seconds*1000)
else:
tmp_audio = text_audio
else:
tmp_audio = text_audio + AudioSegment.silent(dur_time - text_audio_dur_time)
new_audio_seg += tmp_audio
infer_audio = os.path.join(out_path, f"{ttime()}_gpt_sovits_refer.wav")
new_audio_seg.export(infer_audio, format="wav")
return (infer_audio,)
def map_vocal(self,audio:AudioSegment,ratio:float,dur_time:float,wav_name:str,temp_folder:str):
tmp_path = f"{temp_folder}/map_{wav_name}"
audio.export(tmp_path, format="wav")
clone_path = f"{temp_folder}/cloned_{wav_name}"
reader = audiotsm.io.wav.WavReader(tmp_path)
writer = audiotsm.io.wav.WavWriter(clone_path,channels=reader.channels,
samplerate=reader.samplerate)
wsloa = audiotsm.wsola(channels=reader.channels,speed=ratio)
wsloa.run(reader=reader,writer=writer)
audio_extended = AudioSegment.from_file(clone_path)
return audio_extended[:dur_time]
def splitall(path):
allparts = []
while 1:
parts = os.path.split(path)
if parts[0] == path: # sentinel for absolute paths
allparts.insert(0, parts[0])
break
elif parts[1] == path: # sentinel for relative paths
allparts.insert(0, parts[1])
break
else:
path = parts[0]
allparts.insert(0, parts[1])
return allparts
def get_files(end_with="pth",model_type="D"):
file_list = []
for filepath,dirnames,filenames in os.walk(os.path.join(parent_directory, "logs")):
for filename in filenames:
if filename.endswith(end_with) and model_type in filename:
tmp_path = os.path.join(filepath, filename)
name_list = splitall(tmp_path)
if model_type == "ckpt":
file_n = name_list[-4] + '&' + name_list[-1]
else:
file_n = name_list[-3] + '&' + name_list[-1]
file_list.append(file_n)
return file_list
class GPT_SOVITS_FT:
@classmethod
def INPUT_TYPES(s):
ft_language_list = ["zh", "en", "ja"]
return {"required":
{"audio": ("AUDIO",),
"srt": ("SRT",),
"exp_name": ("STRING",{
"default": "auto"
}),
"language":(ft_language_list,{
"default": "zh"
}),
"pretrained_s2G":(get_files('pth','G')+["s2G488k.pth"],{
"default": "s2G488k.pth"
}),
"pretrained_s2D":(get_files('pth','D')+["s2D488k.pth"],{
"default": "s2D488k.pth"
}),
"sovits_batch_size": ("INT",{
"min": 1,
"max": 40,
"step": 1,
"default":default_batch_size,
"display": "slider"
}),
"sovits_total_epoch": ("INT",{
"min": 1,
"max": 25,
"step": 1,
"default":8,
"display": "slider"
}),
"text_low_lr_rate": ("FLOAT",{
"min": 0.2,
"max": 0.6,
"step": 0.05,
"default":0.4,
"display": "slider"
}),
"sovits_save_every_epoch": ("INT",{
"min": 1,
"max": 25,
"step": 1,
"default":4,
"display": "slider"
}),
"if_save_latest_sovits":("BOOLEAN",{
"default": True
}),
"if_save_every_sovits_weights":("BOOLEAN",{
"default": True
}),
"pretrained_s1":(get_files("ckpt","ckpt")+["s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"],{
"default": "s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
}),
"gpt_batch_size": ("INT",{
"min": 1,
"max": 40,
"step": 1,
"default":default_batch_size,
"display": "slider"
}),
"gpt_total_epoch": ("INT",{
"min": 2,
"max": 50,
"step": 1,
"default":15,
"display": "slider"
}),
"if_dpo":("BOOLEAN",{
"default": False
}),
"if_save_latest_gpt":("BOOLEAN",{
"default": True
}),
"if_save_every_gpt_weights":("BOOLEAN",{
"default": True
}),
"gpt_save_every_epoch": ("INT",{
"min": 1,
"max": 50,
"step": 1,
"default":5,
"display": "slider"
}),
}
}
CATEGORY = "AIFSH_GPT_SOVITS"
RETURN_TYPES = ()
OUTPUT_NODE = True
FUNCTION = "finetune"
def finetune(self,audio,srt,exp_name,language,pretrained_s2G,
pretrained_s2D,sovits_batch_size,sovits_total_epoch,
text_low_lr_rate,sovits_save_every_epoch,if_save_latest_sovits,
if_save_every_sovits_weights,pretrained_s1,gpt_batch_size,
gpt_total_epoch,if_dpo,if_save_latest_gpt,if_save_every_gpt_weights,
gpt_save_every_epoch):
logging.disable(logging.WARNING)
logs_path = os.path.join(parent_directory,"logs")
shutil.rmtree(logs_path,ignore_errors=True)
srt_path = folder_paths.get_annotated_filepath(srt)
audio_path = folder_paths.get_annotated_filepath(audio)
audio_seg = AudioSegment.from_file(audio_path)
if pretrained_s2D == "s2D488k.pth":
pretrained_s2D = os.path.join(weights_path,"s2D488k.pth")
else:
pretrained_s2D = pretrained_s2D.split("&")
pretrained_s2D = os.path.join(logs_path,pretrained_s2D[0],"logs_s2",pretrained_s2D[1])
if pretrained_s2G == "s2G488k.pth":
pretrained_s2G = os.path.join(weights_path,"s2G488k.pth")
else:
pretrained_s2G = pretrained_s2G.split("&")
pretrained_s2G = os.path.join(logs_path,pretrained_s2G[0],"logs_s2",pretrained_s2G[1])
if pretrained_s1 == "s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt":
pretrained_s1 = os.path.join(weights_path,"s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt")
else:
pretrained_s1 = pretrained_s1.split("&")
pretrained_s1 = os.path.join(logs_path,pretrained_s1[0],"logs_s1/ckpt",pretrained_s1[1])
with open(srt_path, 'r', encoding="utf-8") as file:
file_content = file.read()
work_path_list = []
for i, sub in enumerate(list(SrtPare(file_content))):
start_time = sub.start.total_seconds() * 1000
end_time = sub.end.total_seconds() * 1000
if exp_name == "auto":
try:
text = sub.content[1:]
new_exp_name = f"speaker_{int(sub.content[0])}"
except:
text = sub.content
new_exp_name = "speaker_0"
else:
text = sub.content
new_exp_name = exp_name
work_path = os.path.join(parent_directory,"logs",new_exp_name)
if work_path not in work_path_list: work_path_list.append(work_path)
os.makedirs(work_path, exist_ok=True)
inp_text = os.path.join(work_path, "annotation.list")
inp_wav_dir = os.path.join(work_path,"wav")
os.makedirs(inp_wav_dir, exist_ok=True)
vocal_path = os.path.join(inp_wav_dir, f"{new_exp_name}-%04d.wav" % (i+1))
vocal_seg = audio_seg[start_time:end_time]
vocal_seg.export(vocal_path, format="wav")
with open(inp_text, 'a', encoding="utf-8") as w:
line = f'{vocal_path}|{new_exp_name}|{language}|{text}\n'
w.write(line)
for work_path in work_path_list:
inp_text = os.path.join(work_path, "annotation.list")
inp_wav_dir = os.path.join(work_path,"wav")
exp_name = os.path.basename(work_path)
open1abc(inp_text,inp_wav_dir,exp_name,pretrained_s2G,work_path)
import gc;gc.collect();torch.cuda.empty_cache()
open1Ba(batch_size=sovits_batch_size,total_epoch=sovits_total_epoch,
exp_name=exp_name,text_low_lr_rate=text_low_lr_rate,
if_save_latest=if_save_latest_sovits,if_save_every_weights=if_save_every_sovits_weights,
save_every_epoch=sovits_save_every_epoch,pretrained_s2G=pretrained_s2G,
pretrained_s2D=pretrained_s2D,work_path=work_path)
import gc;gc.collect();torch.cuda.empty_cache()
open1Bb(batch_size=gpt_batch_size,total_epoch=gpt_total_epoch,exp_name=exp_name,
if_dpo=if_dpo,if_save_latest=if_save_latest_gpt,if_save_every_weights=if_save_every_gpt_weights,
save_every_epoch=gpt_save_every_epoch,pretrained_s1=pretrained_s1,work_path=work_path)
import gc;gc.collect();torch.cuda.empty_cache()
return {"ui":{"finetune":[SoVITS_weight_root,GPT_weight_root]}}
class PreViewAudio:
@classmethod
def INPUT_TYPES(s):
return {"required":
{"audio": ("AUDIO",),}
}
CATEGORY = "AIFSH_GPT_SOVITS"
DESCRIPTION = "hello world!"
RETURN_TYPES = ()
OUTPUT_NODE = True
FUNCTION = "load_audio"
def load_audio(self, audio):
audio_name = os.path.basename(audio)
tmp_path = os.path.dirname(audio)
audio_root = os.path.basename(tmp_path)
return {"ui": {"audio":[audio_name,audio_root]}}
class LoadAudio:
@classmethod
def INPUT_TYPES(s):
files = [f for f in os.listdir(input_path) if os.path.isfile(os.path.join(input_path, f)) and f.split('.')[-1] in ["wav", "mp3","WAV","flac","m4a"]]
return {"required":
{"audio": (sorted(files),)},
}
CATEGORY = "AIFSH_GPT_SOVITS"
RETURN_TYPES = ("AUDIO",)
FUNCTION = "load_audio"
def load_audio(self, audio):
audio_path = folder_paths.get_annotated_filepath(audio)
return (audio_path,)
class LoadSRT:
@classmethod
def INPUT_TYPES(s):
files = [f for f in os.listdir(input_path) if os.path.isfile(os.path.join(input_path, f)) and f.split('.')[-1] in ["srt", "txt"]]
return {"required":
{"srt": (sorted(files),)},
}
CATEGORY = "AIFSH_GPT_SOVITS"
RETURN_TYPES = ("SRT",)
FUNCTION = "load_srt"
def load_srt(self, srt):
srt_path = folder_paths.get_annotated_filepath(srt)
return (srt_path,)