-
Notifications
You must be signed in to change notification settings - Fork 0
/
08_1_model_feed.R
372 lines (291 loc) · 19 KB
/
08_1_model_feed.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
# ==================================================================================================================================
# ==================================================================================================================================
#
# Modular code for the publication: Heat Risks in Swiss Milk production
#
# Citation: Bucheli, J., Uldry, M. and Finger, R. 2022. Heat Risks in Swiss Milk production. Journal of the Agricultural and Applied
# Economics Association.
#
# Part 8.1/9: Model for feed purchases
# Note: This codes builds on the other parts.
#
# ==================================================================================================================================
# ==================================================================================================================================
library(dplyr)
library(plyr)
library(lspline)
library(plm)
library(fixest)
# -------------------------------------------------------------------------
# Load data and preparation of loops
# -------------------------------------------------------------------------
load("Meteo/Temperature/farm_T_daily.RData")
load("Meteo/Precipitation/farm_precip_daily.RData")
colnames(farm_T_hourly)[5] <- "Temperature"
# This is loaded from the first script 01_sample_geo.R
sub_panels_ID <- list(good_farms_panel,good_farms_panel_plain, good_farms_panel_hill, good_farms_panel_mountain)
names(sub_panels_ID) <- c("all zones", "plain zone", "hill zone","mountain zone")
# Define minimum distance between 2 knots
required_space <- 5
# -------------------------------------------------------------------------
# Model resulting in the largest goodness of fit
# -------------------------------------------------------------------------
# List with the knot combination for model with largest goodness of fit
list_final_knot_combination <- list()
# List with model with largest goodness of fit
list_final_model <- list()
# z represents the zone (i.e.sub-panel)
for (z in 1:length(names(sub_panels_ID))){
# Get data for subset z
sub_dairy_farms_panel_final <- dairy_farms_panel_final[which(dairy_farms_panel_final$farm %in% sub_panels_ID[[z]] & dairy_farms_panel_final$sk_Futter_tot > 0),]
sub_farm_T_hourly <- farm_T_hourly[which(farm_T_hourly$farm %in% unique(sub_dairy_farms_panel_final$farm)),]
sub_farm_precip_daily <- farm_precip_daily[which(farm_precip_daily$farm %in% unique(sub_dairy_farms_panel_final$farm)),]
# Borders for knot location
# Define lowest and upper bounds for knot location
lower_bound <- floor(quantile(sub_farm_T_hourly$Temperature,0.05, type=1, na.rm=T))
upper_bound <- ceiling(quantile(sub_farm_T_hourly$Temperature,0.95, type=1, na.rm=T))
knot_range <- seq(lower_bound, upper_bound,1)
# Calculate cumulative precipitation (farm and year) and merge with accounting data
temp_CP <- sub_farm_precip_daily %>%
group_by(farm,year)%>%
summarise_at(vars(precip),sum, na.rm=T)
# Best knot combination for given number of knots
temp_list_knots <- list()
# List with best model for each number of knots
temp_list_models <- list()
# ----------------------
# Linear model
# ----------------------
# Merge all relevant data
temp_Temperature<-sub_farm_T_hourly %>%
group_by(farm,year)%>%
summarise_at(vars(Temperature),sum, na.rm=T)
sub_farm_panel_T_yearly <- join(sub_dairy_farms_panel_final, temp_Temperature, by=c("farm", "year"))
sub_farm_panel_T_PP_yearly <- join(sub_farm_panel_T_yearly, temp_CP, by=c("farm", "year"))
sub_farm_panel_T_PP_yearly$pp2 <- (sub_farm_panel_T_PP_yearly$precip)^2
rm(temp_Temperature,sub_farm_panel_T_yearly)
temp_list_models[[1]] <- feols(log(sk_Futter_tot) ~ Temperature + precip +pp2 | farm + year, data = sub_farm_panel_T_PP_yearly, cluster=c("farm", "year"))
rm(sub_farm_panel_T_PP_yearly)
# ----------------------
# 1 knot
# ----------------------
temp_RSS_1_knot <- vector(length=length(knot_range))
for (k in 1:length(knot_range)){
temp_new_ts_T_ls <- as.data.frame(lspline(sub_farm_T_hourly$Temperature,knots= knot_range[k]))
sub_farm_T_hourly_extended <- bind_cols(sub_farm_T_hourly, temp_new_ts_T_ls)
colnames(sub_farm_T_hourly_extended)[1] <- "farm"
colnames(sub_farm_T_hourly_extended)[8] <- "s_Temperature_1"
colnames(sub_farm_T_hourly_extended)[9] <- "s_Temperature_2"
# Aggregate to yearly values
temp_Temperature<-sub_farm_T_hourly_extended %>%
group_by(farm,year)%>%
summarise_at(vars(s_Temperature_1,s_Temperature_2),sum, na.rm=T)
sub_farm_panel_T_yearly <- join(sub_dairy_farms_panel_final, temp_Temperature, by=c("farm", "year"))
sub_farm_panel_T_PP_yearly <- join(sub_farm_panel_T_yearly, temp_CP, by=c("farm", "year"))
sub_farm_panel_T_PP_yearly$pp2 <- (sub_farm_panel_T_PP_yearly$precip)^2
rm(temp_Temperature,sub_farm_panel_T_yearly)
temp1 <- feols(log(sk_Futter_tot) ~ s_Temperature_1 + s_Temperature_2 + precip +pp2 | farm + year, data = sub_farm_panel_T_PP_yearly, cluster=c("farm", "year"))
temp_RSS_1_knot[k] <- sum(resid(temp1)^2)
rm(temp_new_ts_T_ls, sub_farm_T_hourly_extended, sub_farm_panel_T_PP_yearly,temp1)
print(k / length(knot_range))
print(Sys.time())
}
# Best knot location for 1 knot
temp_list_knots[[1]] <- knot_range[which.min(temp_RSS_1_knot)]
rm(temp_RSS_1_knot)
# Best model for 1 knot
temp_new_ts_T_ls <- as.data.frame(lspline(sub_farm_T_hourly$Temperature,knots= temp_list_knots[[1]]))
sub_farm_T_hourly_extended <- bind_cols(sub_farm_T_hourly, temp_new_ts_T_ls)
colnames(sub_farm_T_hourly_extended)[1] <- "farm"
colnames(sub_farm_T_hourly_extended)[8] <- "s_Temperature_1"
colnames(sub_farm_T_hourly_extended)[9] <- "s_Temperature_2"
# Aggregate to yearly values
temp_Temperature<-sub_farm_T_hourly_extended %>%
group_by(farm,year)%>%
summarise_at(vars(s_Temperature_1,s_Temperature_2),sum, na.rm=T)
sub_farm_panel_T_yearly <- join(sub_dairy_farms_panel_final, temp_Temperature, by=c("farm", "year"))
sub_farm_panel_T_PP_yearly <- join(sub_farm_panel_T_yearly, temp_CP, by=c("farm", "year"))
sub_farm_panel_T_PP_yearly$pp2 <- (sub_farm_panel_T_PP_yearly$precip)^2
rm(temp_Temperature,sub_farm_panel_Temperature_yearly)
temp_list_models[[2]] <- feols(log(sk_Futter_tot) ~ s_Temperature_1 + s_Temperature_2 + precip +pp2 | farm + year, data = sub_farm_panel_T_PP_yearly, cluster=c("farm", "year"))
rm(temp_new_ts_T_ls, sub_farm_T_hourly_extended, sub_farm_panel_T_PP_yearly,temp1)
# ----------------------
# 2 knots
# ----------------------
knots_2_combi <- combn(knot_range, 2, simplify = T)
diff_1 <- abs(knots_2_combi[1,] - knots_2_combi[2,])
knots_2_combi_good <- knots_2_combi[,which(diff_1 >= required_space)]
temp_RSS_2_knot <- vector(length=ncol(knots_2_combi_good))
for (k in 1:ncol(knots_2_combi_good)){
temp_new_ts_T_ls <- as.data.frame(lspline(sub_farm_T_hourly$Temperature,knots= knots_2_combi_good[,k]))
sub_farm_T_hourly_extended <- bind_cols(sub_farm_T_hourly, temp_new_ts_T_ls)
colnames(sub_farm_T_hourly_extended)[1] <- "farm"
colnames(sub_farm_T_hourly_extended)[8] <- "s_Temperature_1"
colnames(sub_farm_T_hourly_extended)[9] <- "s_Temperature_2"
colnames(sub_farm_T_hourly_extended)[10] <- "s_Temperature_3"
# Aggregate to yearly values
temp_Temperature<-sub_farm_T_hourly_extended %>%
group_by(farm,year)%>%
summarise_at(vars(s_Temperature_1,s_Temperature_2,s_Temperature_3),sum, na.rm=T)
sub_farm_panel_T_yearly <- join(sub_dairy_farms_panel_final, temp_Temperature, by=c("farm", "year"))
sub_farm_panel_T_PP_yearly <- join(sub_farm_panel_T_yearly, temp_CP, by=c("farm", "year"))
sub_farm_panel_T_PP_yearly$pp2 <- (sub_farm_panel_T_PP_yearly$precip)^2
rm(temp_Temperature,sub_farm_panel_T_yearly)
temp1 <- feols(log(sk_Futter_tot) ~ s_Temperature_1 + s_Temperature_2 + s_Temperature_3 + precip +pp2 | farm + year, data = sub_farm_panel_T_PP_yearly, cluster=c("farm", "year"))
temp_RSS_2_knot[k] <- sum(resid(temp1)^2)
rm(temp_new_ts_T_ls, sub_farm_T_hourly_extended, sub_farm_panel_T_PP_yearly,temp1)
print(k / ncol(knots_2_combi_good))
print(Sys.time())
}
# Best knot location for 2 knots
temp_list_knots[[2]] <- knots_2_combi_good[,which.min(temp_RSS_2_knot)]
rm(temp_RSS_2_knot)
# Best model for 2 knots
temp_new_ts_T_ls <- as.data.frame(lspline(sub_farm_T_hourly$Temperature,knots= temp_list_knots[[2]]))
sub_farm_T_hourly_extended <- bind_cols(sub_farm_T_hourly, temp_new_ts_T_ls)
colnames(sub_farm_T_hourly_extended)[1] <- "farm"
colnames(sub_farm_T_hourly_extended)[8] <- "s_Temperature_1"
colnames(sub_farm_T_hourly_extended)[9] <- "s_Temperature_2"
colnames(sub_farm_T_hourly_extended)[10] <- "s_Temperature_3"
# Aggregate to yearly values
temp_Temperature<-sub_farm_T_hourly_extended %>%
group_by(farm,year)%>%
summarise_at(vars(s_Temperature_1,s_Temperature_2, s_Temperature_3),sum, na.rm=T)
sub_farm_panel_T_yearly <- join(sub_dairy_farms_panel_final, temp_Temperature, by=c("farm", "year"))
sub_farm_panel_T_PP_yearly <- join(sub_farm_panel_T_yearly, temp_CP, by=c("farm", "year"))
sub_farm_panel_T_PP_yearly$pp2 <- (sub_farm_panel_T_PP_yearly$precip)^2
rm(temp_Temperature,sub_farm_panel_T_yearly)
temp_list_models[[3]] <- feols(log(sk_Futter_tot) ~ s_Temperature_1 + s_Temperature_2 + s_Temperature_3 + precip +pp2 | farm + year, data = sub_farm_panel_T_PP_yearly, cluster=c("farm", "year"))
rm(temp_new_ts_T_ls, sub_farm_T_hourly_extended, sub_farm_panel_T_PP_yearly)
# ----------------------
# 3 knots
# ----------------------
knots_3_combi <- combn(knot_range, 3, simplify = T)
differences <- matrix(NA, nrow=3, ncol=ncol(knots_3_combi))
differences[1,] <- abs(knots_3_combi[1,] - knots_3_combi[2,])
differences[2,] <- abs(knots_3_combi[1,] - knots_3_combi[3,])
differences[3,] <- abs(knots_3_combi[2,] - knots_3_combi[3,])
knots_3_combi_good <- knots_3_combi[,which(differences[1,] >= required_space & differences[2,] >= required_space & differences[3,] >= required_space)]
temp_RSS_3_knot <- vector(length=ncol(knots_3_combi_good))
for (k in 1:ncol(knots_3_combi_good)){
temp_new_ts_T_ls <- as.data.frame(lspline(sub_farm_T_hourly$Temperature,knots= knots_3_combi_good[,k]))
sub_farm_T_hourly_extended <- bind_cols(sub_farm_T_hourly, temp_new_ts_T_ls)
colnames(sub_farm_T_hourly_extended)[1] <- "farm"
colnames(sub_farm_T_hourly_extended)[8] <- "s_Temperature_1"
colnames(sub_farm_T_hourly_extended)[9] <- "s_Temperature_2"
colnames(sub_farm_T_hourly_extended)[10] <- "s_Temperature_3"
colnames(sub_farm_T_hourly_extended)[11] <- "s_Temperature_4"
# Aggregate to yearly values
temp_Temperature<-sub_farm_T_hourly_extended %>%
group_by(farm,year)%>%
summarise_at(vars(s_Temperature_1,s_Temperature_2,s_Temperature_3,s_Temperature_4),sum, na.rm=T)
sub_farm_panel_T_yearly <- join(sub_dairy_farms_panel_final, temp_Temperature, by=c("farm", "year"))
sub_farm_panel_T_PP_yearly <- join(sub_farm_panel_T_yearly, temp_CP, by=c("farm", "year"))
sub_farm_panel_T_PP_yearly$pp2 <- (sub_farm_panel_T_PP_yearly$precip)^2
rm(temp_Temperature,sub_farm_panel_T_yearly)
temp1 <- feols(log(sk_Futter_tot) ~ s_Temperature_1 + s_Temperature_2 + s_Temperature_3 +s_Temperature_4 + precip +pp2 | farm + year, data = sub_farm_panel_T_PP_yearly, cluster=c("farm", "year"))
temp_RSS_3_knot[k] <- sum(resid(temp1)^2)
rm(temp_new_ts_T_ls, sub_farm_T_hourly_extended, sub_farm_panel_T_PP_yearly,temp1)
print(k / ncol(knots_3_combi_good))
print(Sys.time())
}
# Best knot location for 3 knots
temp_list_knots[[3]] <- knots_3_combi_good[,which.min(temp_RSS_3_knot)]
rm(temp_RSS_3_knot)
# Best model for 3 knot
temp_new_ts_T_ls <- as.data.frame(lspline(sub_farm_T_hourly$Temperature,knots= temp_list_knots[[3]]))
sub_farm_T_hourly_extended <- bind_cols(sub_farm_T_hourly, temp_new_ts_T_ls)
colnames(sub_farm_T_hourly_extended)[1] <- "farm"
colnames(sub_farm_T_hourly_extended)[8] <- "s_Temperature_1"
colnames(sub_farm_T_hourly_extended)[9] <- "s_Temperature_2"
colnames(sub_farm_T_hourly_extended)[10] <- "s_Temperature_3"
colnames(sub_farm_T_hourly_extended)[11] <- "s_Temperature_4"
# Aggregate to yearly values
temp_Temperature<-sub_farm_T_hourly_extended %>%
group_by(farm,year)%>%
summarise_at(vars(s_Temperature_1,s_Temperature_2, s_Temperature_3,s_Temperature_4),sum, na.rm=T)
sub_farm_panel_T_yearly <- join(sub_dairy_farms_panel_final, temp_Temperature, by=c("farm", "year"))
sub_farm_panel_T_PP_yearly <- join(sub_farm_panel_T_yearly, temp_CP, by=c("farm", "year"))
sub_farm_panel_T_PP_yearly$pp2 <- (sub_farm_panel_T_PP_yearly$precip)^2
rm(temp_T,sub_farm_panel_T_yearly)
temp_list_models[[4]] <- feols(log(sk_Futter_tot) ~ s_Temperature_1 + s_Temperature_2 + s_Temperature_3 +s_Temperature_4 + precip +pp2 | farm + year, data = sub_farm_panel_T_PP_yearly, cluster=c("farm", "year"))
rm(temp_new_ts_T_ls, sub_farm_T_hourly_extended, sub_farm_panel_T_PP_yearly)
# Identify the overall best model
# Note that AIC does not work for plm models
best_model_number <- which.min(c(AIC(temp_list_models[[1]]),AIC(temp_list_models[[2]]),AIC(temp_list_models[[3]]),AIC(temp_list_models[[4]])))
# Get knot combination
if( best_model_number == 1){
list_final_knot_combination[[z]] <- NA
}else{
list_final_knot_combination[[z]] <- temp_list_knots[[best_model_number - 1]]}
# Save the best model as plm object (easier to control for heteroscedasticity)
if( best_model_number == 1){
temp_Temperature<-sub_farm_T_hourly %>%
group_by(farm,year)%>%
summarise_at(vars(Temperature),sum, na.rm=T)
sub_farm_panel_T_yearly <- join(sub_dairy_farms_panel_final, temp_Temperature, by=c("farm", "year"))
sub_farm_panel_T_PP_yearly <- join(sub_farm_panel_T_yearly, temp_CP, by=c("farm", "year"))
sub_farm_panel_T_PP_yearly$pp2 <- (sub_farm_panel_T_PP_yearly$precip)^2
rm(temp_Temperature,sub_farm_panel_T_yearly)
list_final_model[[z]] <- feols(log(sk_Futter_tot) ~ Temperature + precip +pp2 | farm + year, data = sub_farm_panel_T_PP_yearly, cluster=c("farm", "year"))
rm(sub_farm_panel_T_PP_yearly)
}else if (best_model_number == 2){
temp_new_ts_T_ls <- as.data.frame(lspline(sub_farm_T_hourly$Temperature,knots= temp_list_knots[[1]]))
sub_farm_T_hourly_extended <- bind_cols(sub_farm_T_hourly, temp_new_ts_T_ls)
colnames(sub_farm_T_hourly_extended)[1] <- "farm"
colnames(sub_farm_T_hourly_extended)[8] <- "s_Temperature_1"
colnames(sub_farm_T_hourly_extended)[9] <- "s_Temperature_2"
# Aggregate to yearly values
temp_Temperature<-sub_farm_T_hourly_extended %>%
group_by(farm,year)%>%
summarise_at(vars(s_Temperature_1,s_Temperature_2),sum, na.rm=T)
sub_farm_panel_T_yearly <- join(sub_dairy_farms_panel_final, temp_Temperature, by=c("farm", "year"))
sub_farm_panel_T_PP_yearly <- join(sub_farm_panel_T_yearly, temp_CP, by=c("farm", "year"))
sub_farm_panel_T_PP_yearly$pp2 <- (sub_farm_panel_T_PP_yearly$precip)^2
rm(temp_Temperature,sub_farm_panel_T_yearly)
list_final_model[[z]] <- feols(log(sk_Futter_tot) ~ s_Temperature_1 + s_Temperature_2 + precip +pp2 | farm + year, data = sub_farm_panel_T_PP_yearly, cluster=c("farm", "year"))
rm(temp_new_ts_T_ls, sub_farm_T_hourly_extended, sub_farm_panel_T_PP_yearly)
}else if (best_model_number == 3){
temp_new_ts_T_ls <- as.data.frame(lspline(sub_farm_T_hourly$Temperature,knots= temp_list_knots[[2]]))
sub_farm_T_hourly_extended <- bind_cols(sub_farm_T_hourly, temp_new_ts_T_ls)
colnames(sub_farm_T_hourly_extended)[1] <- "farm"
colnames(sub_farm_T_hourly_extended)[8] <- "s_Temperature_1"
colnames(sub_farm_T_hourly_extended)[9] <- "s_Temperature_2"
colnames(sub_farm_T_hourly_extended)[10] <- "s_Temperature_3"
# Aggregate to yearly values
temp_Temperature<-sub_farm_T_hourly_extended %>%
group_by(farm,year)%>%
summarise_at(vars(s_Temperature_1,s_Temperature_2, s_Temperature_3),sum, na.rm=T)
sub_farm_panel_T_yearly <- join(sub_dairy_farms_panel_final, temp_Temperature, by=c("farm", "year"))
sub_farm_panel_T_PP_yearly <- join(sub_farm_panel_T_yearly, temp_CP, by=c("farm", "year"))
sub_farm_panel_T_PP_yearly$pp2 <- (sub_farm_panel_T_PP_yearly$precip)^2
rm(temp_T,sub_farm_panel_T_yearly)
list_final_model[[z]] <- feols(log(sk_Futter_tot) ~ s_Temperature_1 +s_Temperature_2+s_Temperature_3 + precip +pp2 | farm + year, data = sub_farm_panel_T_PP_yearly, cluster=c("farm", "year"))
rm(temp_new_ts_T_ls, sub_farm_T_hourly_extended, sub_farm_panel_T_PP_yearly)
} else {
temp_new_ts_T_ls <- as.data.frame(lspline(sub_farm_T_hourly$Temperature,knots= temp_list_knots[[3]]))
sub_farm_T_hourly_extended <- bind_cols(sub_farm_T_hourly, temp_new_ts_T_ls)
colnames(sub_farm_T_hourly_extended)[1] <- "farm"
colnames(sub_farm_T_hourly_extended)[8] <- "s_Temperature_1"
colnames(sub_farm_T_hourly_extended)[9] <- "s_Temperature_2"
colnames(sub_farm_T_hourly_extended)[10] <- "s_Temperature_3"
colnames(sub_farm_T_hourly_extended)[11] <- "s_Temperature_4"
# Aggregate to yearly values
temp_Temperature<-sub_farm_T_hourly_extended %>%
group_by(farm,year)%>%
summarise_at(vars(s_Temperature_1,s_Temperature_2, s_Temperature_3,s_Temperature_4),sum, na.rm=T)
sub_farm_panel_T_yearly <- join(sub_dairy_farms_panel_final, temp_Temperature, by=c("farm", "year"))
sub_farm_panel_T_PP_yearly <- join(sub_farm_panel_T_yearly, temp_CP, by=c("farm", "year"))
sub_farm_panel_T_PP_yearly$pp2 <- (sub_farm_panel_T_PP_yearly$precip)^2
rm(temp_Temperature,sub_farm_panel_T_yearly)
list_final_model[[z]] <- feols(log(sk_Futter_tot) ~ s_Temperature_1 +s_Temperature_2+s_Temperature_3 + s_Temperature_4 + precip +pp2 | farm + year, data = sub_farm_panel_T_PP_yearly, cluster=c("farm", "year"))
rm(temp_new_ts_T_ls, sub_farm_T_hourly_extended, sub_farm_panel_T_PP_yearly)
}
# Tidy up environment
rm(best_model_number, temp_list_models,temp_list_knots,sub_farm_T_hourly, sub_farm_precip_daily , sub_dairy_farms_panel_final, lower_bound, upper_bound, knot_range, best_model_number, temp_list_models)
rm(differences,knots_2_combi, knots_2_combi_good, knots_3_combi, knots_3_combi_good, temp_CP, sub_farm_precip_daily, sub_farm_T_hourly, sub_dairy_farms_panel_final)
}
list_final_model_feed <- list_final_model
list_final_knot_combination_feed <- list_final_knot_combination
save(list_final_model_feed, file="Models/final_model_feed.RData")
save(list_final_knot_combination_feed, file="Models/final_knots_feed.RData")