From 1804c46722dbfa5f48542b06cf603c6d0b353699 Mon Sep 17 00:00:00 2001 From: cortner Date: Sun, 18 Aug 2024 14:48:04 -0700 Subject: [PATCH] implement sobolev-space orthogonal bases --- src/Polynomials4ML.jl | 4 ++ src/sobolev.jl | 153 ++++++++++++++++++++++++++++++++++++++++++ test/runtests.jl | 1 + test/test_sobolev.jl | 57 ++++++++++++++++ 4 files changed, 215 insertions(+) create mode 100644 src/sobolev.jl create mode 100644 test/test_sobolev.jl diff --git a/src/Polynomials4ML.jl b/src/Polynomials4ML.jl index d2ef943..20a8579 100644 --- a/src/Polynomials4ML.jl +++ b/src/Polynomials4ML.jl @@ -56,6 +56,10 @@ include("jacobiweights.jl") include("monomials.jl") include("chebbasis.jl") +# less standard polynomial basis such as Sobolev-space orthogonal bases +# laplacian eigenbases etc; experimental, currently not documented or exported +include("sobolev.jl") + # 2d harmonics / trigonometric polynomials include("trig.jl") include("rtrig.jl") diff --git a/src/sobolev.jl b/src/sobolev.jl new file mode 100644 index 0000000..953309a --- /dev/null +++ b/src/sobolev.jl @@ -0,0 +1,153 @@ +using LinearAlgebra: eigen, Symmetric, mul! + +# TODO: this is a temporary construction. It might be better to write +# a simple chain structure that is more flexible but implements +# the P4ML interface. + +struct TransformedBasis{TB, TM} <: AbstractP4MLBasis + basis::TB + transform::TM + meta::Dict{String, Any} +end + +Base.length(basis::TransformedBasis) = size(basis.transform, 1) + +natural_indices(basis::TransformedBasis) = 1:length(basis) + +index(basis::TransformedBasis, m::Integer) = m + +Base.show(io::IO, basis::TransformedBasis) = + print(io, "TransformedBasis(maxn = $(length(basis)), maxq = $(length(basis.basis))") + +_valtype(basis::TransformedBasis, TX::Type{T}) where {T} = + promote_type(T, eltype(basis.transform)) + +_generate_input(basis::TransformedBasis) = + _generate_input(basis.basis) + +# -------------------------------------------------- + +function evaluate!(Q::AbstractArray, + basis::TransformedBasis, + x::Number) + P = @withalloc evaluate!(basis.basis, x) + mul!(Q, basis.transform, P) + return Q +end + +function evaluate_ed!(Q::AbstractArray, dQ::AbstractArray, + basis::TransformedBasis, + x::Number) + P, dP = @withalloc evaluate_ed!(basis.basis, x) + mul!(Q, basis.transform, P) + mul!(dQ, basis.transform, dP) + return Q, dQ +end + +function evaluate_ed2!(Q::AbstractArray, dQ::AbstractArray, ddQ, + basis::TransformedBasis, + x::Number) + P, dP, ddP = @withalloc evaluate_ed2!(basis.basis, x) + mul!(Q, basis.transform, P) + mul!(dQ, basis.transform, dP) + mul!(ddQ, basis.transform, ddP) + return Q, dQ, ddQ +end + + +function evaluate!(Q::AbstractArray, + basis::TransformedBasis, + x::AbstractVector{<: Number}) + P = @withalloc evaluate!(basis.basis, x) + mul!(Q, P, transpose(basis.transform)) + return Q +end + +function evaluate_ed!(Q::AbstractArray, dQ::AbstractArray, + basis::TransformedBasis, + x::AbstractVector{<: Number}) + P, dP = @withalloc evaluate_ed!(basis.basis, x) + mul!(Q, P, transpose(basis.transform)) + mul!(dQ, dP, transpose(basis.transform)) + return Q, dQ +end + +function evaluate_ed2!(Q::AbstractArray, dQ::AbstractArray, ddQ, + basis::TransformedBasis, + x::AbstractVector{<: Number}) + P, dP, ddP = @withalloc evaluate_ed2!(basis.basis, x) + mul!(Q, P, transpose(basis.transform)) + mul!(dQ, dP, transpose(basis.transform)) + mul!(ddQ, ddP, transpose(basis.transform)) + return Q, dQ, ddQ +end + +# -------------------------------------------------- + +function _simple_Hk_weights(k, w0) + weights = zeros(k+1) + weights[1] = w0 + weights[end] = 1 + return weights +end + +function sobolev_basis(maxn; + maxq = maxn, + k = 2, w0 = 0.01, + weights = _simple_Hk_weights(k, w0), + Nquad = 30 * maxq, + xx = range(-1.0, 1.0, length = Nquad)) + # TODO : the uniform grid should be replaced with a gauss quadrature rule + + @assert minimum(xx) ≈ -1.0 && maximum(xx) ≈ 1.0 + @assert maxq >= maxn + + L2basis = Polynomials4ML.legendre_basis(maxq) + + ∇kP = [] + push!(∇kP, x -> L2basis(x)) + p0 = ∇kP[1] + P0 = reduce(hcat, [p0(x) for x in xx]) + G = weights[1] * P0 * P0' + + @show size(G) + + for k = 1:length(weights)-1 + wk = weights[k+1] + pk = x -> ForwardDiff.derivative(∇kP[k], x) + push!(∇kP, pk) + Pk = reduce(hcat, [pk(x) for x in xx]) + G += wk * Pk * Pk' + end + + G /= length(xx) + + # The gramian G encodes the following: + # G_ij = _Hk + # = ∫ w0 P_i(x) P_j(x) + w1 P'_i(x) P'_j(x) + ... + # ... + wk P^(k)_i(x) P^(k)_j(x) dx + # Recall that ∫ P_i P_j = δ_ij. So the following eigenvaly problem + # solves + # < Vi, u >_Hk = λi < Vi, u >_L2 ∀ u + # In linear algebra notation, + # G V[:, i] = λi V[:, i] + λ, V = eigen(Symmetric(G)) + + # We now define a new basis Q = V' * P then + # _Hk = ∑_a,b V_ai V_bj _Hk + # = ∑_a V_ai V_bj G_ab + # = [ V[:, i]' G V[:, j] + # = λi δ_ij + # + # This means that the new basis if Hk orthogonal (not orthonormal!) and + # λi is a measure for smoothness of Qi. + # we store that information in the meta-data of the basis. + + T = collect(V[:, 1:maxn]') + meta = Dict("info" => "sobolev_basis", + "nodes" => xx, + "weights" => weights, + "lambda" => λ[1:maxn]) + + return TransformedBasis(L2basis, T, meta) +end diff --git a/test/runtests.jl b/test/runtests.jl index be33f4a..b94bb7c 100644 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -7,6 +7,7 @@ using Test @testset "OrthPolyBasis1D3T" begin include("test_op1d3t.jl"); end @testset "DiscreteWeights" begin include("test_discreteweights.jl"); end @testset "Chebyshev" begin include("test_cheb.jl"); end + @testset "Sobolev" begin include("test_sobolev.jl"); end # 2D Harmonics @testset "TrigonometricPolynomials" begin include("test_trig.jl"); end diff --git a/test/test_sobolev.jl b/test/test_sobolev.jl new file mode 100644 index 0000000..572b46a --- /dev/null +++ b/test/test_sobolev.jl @@ -0,0 +1,57 @@ + + +using Polynomials4ML, Test +using Polynomials4ML: evaluate, evaluate_d, evaluate_dd, _generate_input +using Polynomials4ML.Testing: println_slim, test_evaluate_xx, print_tf, + test_withalloc, test_chainrules +using LinearAlgebra: I, norm, dot +# using QuadGK +using ACEbase.Testing: fdtest +P4ML = Polynomials4ML + +@info("Testing Sobolev Basis") + + +## + +maxn = 10 +maxq = 30 + +basis = P4ML.sobolev_basis(maxn; maxq = maxq) + +test_evaluate_xx(basis) +test_withalloc(basis) +# test_chainrules(basis) + +## +# some visual tests to keep around for the moment. +#= +using Plots + +xx = range(-1, 1, length=200) +pL2 = evaluate(basis.basis, xx) +pH2 = evaluate(basis, xx) +signs = [1, -1, 1, -1, -1] +plt = plot() +for n = 1:5 + plot!(plt, xx, pL2[:, n], label = "L2-$n", lw = 2, c = n) + plot!(plt, xx, signs[n] * pH2[:, n], label = "H2-$n", lw = 2, c = n, ls = :dash) +end +plt + +## + +signs = [1, -1, 1, -1, -1, -1, -1, -1, 1, 1] +plt = plot(; ylims = (-1.3, 1.3)) +for n = 6:10 + plot!(plt, xx, pL2[:, n], label = "L2-$n", lw = 2, c = n-5) + plot!(plt, xx, signs[n] * pH2[:, n], label = "H2-$n", lw = 2, c = n-5, ls = :dash) +end +plt + + +n4 = (1:length(basis)).^4 +@info("λ vs n^4") +display([ basis.meta["lambda"] n4 ]) + +=#