From stratch. Tested for recent course tasks ( CS5489 / CS5491 / CS6493 )
Must activate environment first!
Python 3.10 still too new
May need linux subsystem (WSL2) which may collides with Windows environment
Do not use install CMDs in jupyter environment! You will crash your computer!
Only use pip for last resort (e.g. mujoco-py
)
Be familiar with minor software version difference (should be fine for educational use)
Development mode: (Notebook) ROG GM501GM, Win 10 21H2, WSL2, 6c12t i7-8750, 32GB DDR4 2666, GTX 1060 mobile, 500GB SATA SSD + 16GB M2 Optane
Production mode: (Workstation) Huananzhi X99-F8D, Win 10 21H2, no linux subsystem, 24c48t 2678v3 x2, 64GB DDR4 2133 ECC, GTX 1080 Ti x2, 500GB SATA SSD + 2TB SATA HDD
#! /bin/bash
# python=3.10 will lead to almost no avaliable packages!
conda create -n sklearn-env -c conda-forge scikit-learn python=3.9
# As in 220628, no need to open cmd manually
conda init powershell
# Activate before calling jupyter
conda env list
conda activate sklearn-env
# May be fine?
conda install -c conda-forge jupyterlab
# cs6493 tutorial 4
conda install -c conda-forge jupyterlab_widgets
conda install -c conda-forge ipywidgets
# Start jupyter
jupyter lab
# Prefer conda-forge with auto version (older version is not preferred)
# conda-forge failed on 3.9
# supressed by torchtext: https://github.com/pytorch/text
conda install -c pytorch pytorch
conda install -c pytorch torchvision
conda install -c pytorch torchaudio
# cs6493 tutorial 2
conda install -c pytorch torchtext
conda install -c conda-forge ray-tune
# 2.7.0 will have serious issue (cudnn issue)
# 2.6.0 has some weird bug (e.g. keras not found)
conda install -c conda-forge tensorflow-gpu=2.5.0
# cs5483 project
conda install -c esri tensorflow-addons
# Should be fine with almost no risk
conda install -c conda-forge pandas
conda install -c conda-forge matplotlib
conda install -c conda-forge scikit-image
conda install -c conda-forge scipy
conda install -c conda-forge networkx
# Optional: CS6493 asg1 (Testing only)
# transformers includes tokenizers
# conda install -c conda-forge tokenizers
# cs6493 tutorial 3
conda install -c conda-forge datasets
# cs6493 tutorial 4
# Overrided by QG task which requires exact 3.0.0
# conda install -c conda-forge transformers
# cs6493 tutorial 6
conda install -c conda-forge spacy==3.0.0
# cs6493 project (QG task)
# 3.0.2 has incapability with Python 3.9. Hence transformers must be newer then 4.0
conda install -c conda-forge transformers
conda install -c conda-forge nltk
pip install git+https://github.com/Maluuba/nlg-eval.git@master
# Extra (projects out of educational)
conda install -c conda-forge statsmodels