Skip to content
/ mtz_RND Public

Random Network Distillation, Montezuma’s Revenge, PyTorch

Notifications You must be signed in to change notification settings

4kasha/mtz_RND

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Random Network Distillation - PyTorch Implementation (in progress)

Introduction

Using Montezuma’s Revenge environment you will train an agent via Random Network Distillation (RND) algorithm.

In this environment, the observation is an RGB image of the screen, which is an array of shape (210, 160, 3). Given such information, the agent learns how to select best actions for maximizing the score.

18 discrete actions are available (see get_action_meanings()), such as

  • 0 - 'NOOP'
  • 1 - 'FIRE'
  • 2 - 'RIGHT'
  • 3 - 'LEFT'
  • 4 - 'RIGHTFIRE'
  • 5 - 'LEFTFIRE'

Dependencies

  • Python 3.6
  • PyTorch 1.1.0
  • OpenCV Python
  • OpenAI Gym (for Installation, see here)

Contents

  • parallel_envs/

    -- atari_wrappers.py : Taken from openai with minor edits for PyTorch. (Framestack, ClipReward, etc.)

    -- env_eval.py : Wrapper for obtaining an original RGB frame and warped frame to 84x84. Mainly for visualization (see test_env.ipynb).

    -- monitor.py : Recording rewards and episode lengths and so on.

    -- make_atari.py : Creating a wrapped, monitored SubprocVecEnv for Atari.

Overview

References

About

Random Network Distillation, Montezuma’s Revenge, PyTorch

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published