forked from FlorianBindereif/UrbanObjectDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
106 lines (82 loc) · 3.24 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import logging
import tensorflow.compat.v1 as tf
from object_detection.inputs import train_input
from object_detection.protos import input_reader_pb2
from object_detection.builders.dataset_builder import build as build_dataset
from object_detection.utils.config_util import get_configs_from_pipeline_file
from waymo_open_dataset import dataset_pb2 as open_dataset
def get_dataset(tfrecord_path, label_map='label_map.pbtxt'):
"""
Opens a tf record file and create tf dataset
args:
- tfrecord_path [str]: path to a tf record file
- label_map [str]: path the label_map file
returns:
- dataset [tf.Dataset]: tensorflow dataset
"""
input_config = input_reader_pb2.InputReader()
input_config.label_map_path = label_map
input_config.tf_record_input_reader.input_path[:] = [tfrecord_path]
dataset = build_dataset(input_config)
return dataset
def get_module_logger(mod_name):
""" simple logger """
logger = logging.getLogger(mod_name)
handler = logging.StreamHandler()
formatter = logging.Formatter('%(asctime)s %(levelname)-8s %(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.setLevel(logging.DEBUG)
return logger
def get_train_input(config_path):
"""
Get the tf dataset that inputs training batches
args:
- config_path [str]: path to the edited config file
returns:
- dataset [tf.Dataset]: data outputting augmented batches
"""
# parse config
configs = get_configs_from_pipeline_file(config_path)
train_config = configs['train_config']
train_input_config = configs['train_input_config']
# get the dataset
dataset = train_input(train_config, train_input_config, configs['model'])
return dataset
def parse_frame(frame, camera_name='FRONT'):
"""
take a frame, output the bboxes and the image
dataset = tf.data.TFRecordDataset(FILENAME, compression_type='')
for data in dataset:
frame = open_dataset.Frame()
frame.ParseFromString(bytearray(data.numpy()))
args:
- frame [waymo_open_dataset.dataset_pb2.Frame]: a waymo frame, contains images and annotations
- camera_name [str]: one frame contains images and annotations for multiple cameras
returns:
- encoded_jpeg [bytes]: jpeg encoded image
- annotations [protobuf object]: bboxes and classes
"""
# get image
images = frame.images
for im in images:
if open_dataset.CameraName.Name.Name(im.name) != camera_name:
continue
encoded_jpeg = im.image
# get bboxes
labels = frame.camera_labels
for lab in labels:
if open_dataset.CameraName.Name.Name(lab.name) != camera_name:
continue
annotations = lab.labels
return encoded_jpeg, annotations
def int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
def int64_list_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
def bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def bytes_list_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=value))
def float_list_feature(value):
return tf.train.Feature(float_list=tf.train.FloatList(value=value))