-
Notifications
You must be signed in to change notification settings - Fork 15
/
predict_main.py
105 lines (93 loc) · 4.59 KB
/
predict_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# coding=utf-8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import app
from absl import flags
from absl import logging
import math, time
from termcolor import colored
import tensorflow as tf
from src import bert_example, tagging_converter
from src.utils import predict_utils
from src.utils import utils
from src.curLine_file import curLine
FLAGS = flags.FLAGS
flags.DEFINE_string(
'input_file', '/Users/jiang/Documents/Github/text_scalpel/corpus/rephrase_corpus/test.txt',
'Path to the input file containing examples for which to compute '
'predictions.')
flags.DEFINE_enum(
'input_format', 'wikisplit', ['wikisplit'],
'Format which indicates how to parse the input_file.')
flags.DEFINE_string(
'output_file',
'/Users/jiang/Documents/Github/text_scalpel/output/models/cefect/pred.tsv',
'Path to the TSV file where the predictions are written to.')
flags.DEFINE_string(
'label_map_file', '/Users/jiang/Documents/Github/text_scalpel/corpus/rephrase_corpus/output/label_map.txt',
'Path to the label map file. Either a JSON file ending with ".json", that '
'maps each possible tag to an ID, or a text file that has one tag per '
'line.')
flags.DEFINE_string('vocab_file', '/Users/jiang/Documents/Github/text_scalpel/bert_base/RoBERTa-tiny-clue/vocab.txt',
'Path to the BERT vocabulary file.')
flags.DEFINE_integer('max_seq_length', 40, 'Maximum sequence length.')
flags.DEFINE_bool(
'do_lower_case', False,
'Whether to lower case the input text. Should be True for uncased '
'models and False for cased models.')
flags.DEFINE_bool('enable_swap_tag', True, 'Whether to enable the SWAP tag.')
flags.DEFINE_string('saved_model',
'/Users/jiang/Documents/Github/text_scalpel/output/cefect/export/1591764354',
'Path to an exported TF model.')
def main(argv):
if len(argv) > 1:
raise app.UsageError('Too many command-line arguments.')
flags.mark_flag_as_required('input_file')
flags.mark_flag_as_required('input_format')
flags.mark_flag_as_required('output_file')
flags.mark_flag_as_required('label_map_file')
flags.mark_flag_as_required('vocab_file')
flags.mark_flag_as_required('saved_model')
label_map = utils.read_label_map(FLAGS.label_map_file)
converter = tagging_converter.TaggingConverter(
tagging_converter.get_phrase_vocabulary_from_label_map(label_map),
FLAGS.enable_swap_tag)
builder = bert_example.BertExampleBuilder(label_map, FLAGS.vocab_file,
FLAGS.max_seq_length,
FLAGS.do_lower_case, converter)
predictor = predict_utils.LaserTaggerPredictor(
tf.contrib.predictor.from_saved_model(FLAGS.saved_model), builder,
label_map)
print(colored("%s input file:%s" % (curLine(), FLAGS.input_file), "red"))
sources_list = []
target_list = []
with tf.io.gfile.GFile(FLAGS.input_file) as f:
for line in f:
sources, target = line.rstrip('\n').replace('\ufeff', '').split('\t')
sources_list.append([sources])
target_list.append(target)
number = len(sources_list) # 总样本数
predict_batch_size = min(64, number)
batch_num = math.ceil(float(number) / predict_batch_size)
start_time = time.time()
num_predicted = 0
with tf.gfile.Open(FLAGS.output_file, 'w') as writer:
writer.write(f'source\tprediction\ttarget\n')
for batch_id in range(batch_num):
sources_batch = sources_list[batch_id * predict_batch_size: (batch_id + 1) * predict_batch_size]
prediction_batch = predictor.predict_batch(sources_batch=sources_batch)
assert len(prediction_batch) == len(sources_batch)
num_predicted += len(prediction_batch)
for id, [prediction, sources] in enumerate(zip(prediction_batch, sources_batch)):
target = target_list[batch_id * predict_batch_size + id]
writer.write(f'{"".join(sources)}\t{prediction}\t{target}\n')
if batch_id % 20 == 0:
cost_time = (time.time() - start_time) / 60.0
print("%s batch_id=%d/%d, predict %d/%d examples, cost %.2fmin." %
(curLine(), batch_id + 1, batch_num, num_predicted, number, cost_time))
cost_time = (time.time() - start_time) / 60.0
logging.info(
f'{curLine()} {num_predicted} predictions saved to:{FLAGS.output_file}, cost {cost_time} min, ave {cost_time / num_predicted} min.')
if __name__ == '__main__':
app.run(main)