This repository has been archived by the owner on Feb 26, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathFSA_FSAtoREConverter.cpp
205 lines (181 loc) · 7.05 KB
/
FSA_FSAtoREConverter.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
/**
* @file FSA_FSAtoREConverter.cpp
* Contains the implementation of the FSAtoREConverter class.
*/
#include "FSA_FSAtoREConverter.hpp"
#include "FSA_Transition.hpp"
#include "FSA_State.hpp"
#include <vector>
#include <map>
#include <string>
#include "RE_RegularExpression.hpp"
#include "RE_TreeNode.hpp"
using namespace std;
/**
* @brief Converts a FSA to a regular expression using Brzozowski's algebraic method.
* The method was implemented according to information found at
* <a href="http://cs.stackexchange.com/questions/2016/how-to-convert-finite-automata-to-regular-expressions">Stack Exchange</a>.
* This algorithm was then adapted to the existing data structures and improved.
* @param fsa The FSA to convert.
* @return A regular expression equivalent to the given automaton.
* @author Daniel Dreibrodt
*/
RegularExpression *FSAtoREConverter::toRE(FiniteStateAutomaton *fsa) {
fsa = fsa->fsaConvertNEAtoDEA();
fsa = fsa->minimize();
vector<State*> *states = fsa->getStateList();
vector<Transition*> *transitions = fsa->getTransitions();
//create hash-maps to easily find transitions to/from states
map<string, vector<Transition*> > transitionsFromState;
map<string, vector<Transition*> > transitionsToState;
for(vector<Transition*>::iterator it = transitions->begin(); it != transitions->end(); ++it) {
Transition *currentTrans = *it;
//Add transition to transitionsFromState map
//transitionsFromState.insert(make_pair(currentTrans->getBeginningState(), currentTrans);
transitionsFromState[currentTrans->getBeginningState()->getName()].push_back(currentTrans);
//Add transition to transitionsToState map
transitionsToState[currentTrans->getFinishState()->getName()].push_back(currentTrans);
}
///// BRZOZOWSKI ALGORITHM /////
int m,n,i,j;
//m is the number of states
m = (int)states->size();
//b[n] holds the regular expression that describes how a final state can be reached from state n
RETreeNode* b[m];
//a is a matrix that holds all transitions
//If there is a transition from state 0 to state 1 with the symbol x
//then a[0][1]=x
RETreeNode* a[m][m];
//Make sure that start state comes first in state vector
if(!(states->at(0)->isStartState())) {
State *firstState = states->at(0);
for(i=1;i<m;i++) {
State *currentState = states->at(i);
if(currentState->isStartState()) {
(*states)[0] = currentState;
(*states)[i] = firstState;
break;
}
}
}
for(i=0;i<m;i++) {
//Build b
State *currentState = states->at(i);
if(currentState->isFinalState()) {
b[i] = new RETreeNode("");
} else {
b[i] = NULL;
}
//Build a
vector<Transition*> *transFromCurrentState = &(transitionsFromState[currentState->getName()]);
for(j=0;j<m;j++) {
a[i][j] = NULL;
State *targetState = states->at(j);
for(vector<Transition*>::iterator it = transFromCurrentState->begin(); it != transFromCurrentState->end(); ++it) {
Transition *currentTransition = *it;
if(currentTransition->getFinishState()->getName() == targetState->getName()) {
//If several transitions from currentState to targetState exist
//create a boolean "or" regular expression tree node
if(a[i][j] == NULL) {
a[i][j] = new RETreeNode(currentTransition->getEdgeName());
}
else {
RETreeNode *orNode = new RETreeNode(RegularExpression::re_orOp);
orNode->setRight(a[i][j]->clone());
orNode->setLeft(new RETreeNode(currentTransition->getEdgeName()));
a[i][j] = orNode;
}
}
}
}
}
for(n=m-1;n>=0;n--) {
//B[n] := star(A[n,n]) . B[n]
bool foundNNLoop = false; //Addition to original algorithm
if(a[n][n]!=NULL) {
foundNNLoop = true;
//Loops mean repetition -> star operator
RETreeNode* bnStarNode = new RETreeNode(RegularExpression::re_starOp);
bnStarNode->setLeft(a[n][n]->clone());
if(b[n]==NULL) {
b[n] = bnStarNode;
} else {
//combine with already existing regex
RETreeNode* bnAndNode = new RETreeNode(RegularExpression::re_andOp);
bnAndNode->setRight(bnStarNode);
bnAndNode->setLeft(b[n]);
b[n] = bnAndNode;
}
}
//if no loop has been found yet, there exists none for state n
//thus the following part does not need to be executed
if(foundNNLoop) {
for(j=0;j<n;j++) {
//A[n,j] := star(A[n,n]) . A[n,j];
RETreeNode* anjStarNode = new RETreeNode(RegularExpression::re_starOp);
anjStarNode->setLeft(a[n][n]->clone());
if(a[n][j]==NULL) {
a[n][j] = anjStarNode;
} else {
RETreeNode* anjAndNode = new RETreeNode(RegularExpression::re_andOp);
anjAndNode->setRight(anjStarNode);
anjAndNode->setLeft(a[n][j]);
a[n][j] = anjAndNode;
}
}
}
for(i=0;i<n;i++) {
//B[i] += A[i,n] . B[n]
RETreeNode* newBiNode = NULL;
if(a[i][n]!=NULL && b[n]!=NULL) {
newBiNode = new RETreeNode(RegularExpression::re_andOp);
newBiNode->setLeft(a[i][n]->clone());
newBiNode->setRight(b[n]->clone());
} else if(a[i][n]!=NULL) {
newBiNode = a[i][n]->clone();
} else if(b[n]!=NULL) {
newBiNode = b[n]->clone(); }
if(b[i]!=NULL && newBiNode != NULL) {
RETreeNode* biOrNode = new RETreeNode(RegularExpression::re_orOp);
biOrNode->setLeft(b[i]);
biOrNode->setRight(newBiNode);
b[i] = biOrNode;
} else {
b[i] = newBiNode;
}
for(j=0;j<n;j++) {
//A[i,j] += A[i,n] . A[n,j]
RETreeNode* newAijNode = NULL;
if(a[i][n]!=NULL && a[n][j]!=NULL) {
newAijNode = new RETreeNode(RegularExpression::re_andOp);
newAijNode->setLeft(a[i][n]->clone());
newAijNode->setRight(a[n][j]->clone());
} else if(a[i][n]!=NULL) {
newAijNode = a[i][n]->clone();
} else if(a[n][j]!=NULL) {
newAijNode = a[n][j]->clone();
}
if(a[i][j]!=NULL && newAijNode != NULL) {
RETreeNode* aijOrNode = new RETreeNode(RegularExpression::re_orOp);
aijOrNode->setLeft(a[i][j]);
aijOrNode->setRight(newAijNode);
a[i][j] = aijOrNode;
} else {
a[i][j] = newAijNode;
}
}
}
}
RETreeNode* root = b[0];
root->simplify();
//Free memory
for(i=0;i<m;i++) {
for(j=0;j<m;j++) {
delete a[i][j];
}
}
for(i=1;i<m;i++) {
delete b[i];
}
return new RegularExpression(root);
}