-
Notifications
You must be signed in to change notification settings - Fork 69
/
Copy pathutils.lua
252 lines (218 loc) · 7.97 KB
/
utils.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
local utils = {}
-- Transform the coordinates from the original image space to the cropped one
function utils.transform(pt, center, scale, res, invert)
-- Define the transformation matrix
local pt_new = torch.ones(3)
pt_new[1], pt_new[2] = pt[1], pt[2]
local h = 200*scale
local t = torch.eye(3)
t[1][1], t[2][2] = res/h, res/h
t[1][3], t[2][3] = res*(-center[1]/h+0.5), res*(-center[2]/h+0.5)
if invert then
t = torch.inverse(t)
end
local new_point = (t*pt_new):sub(1,2):int()
return new_point
end
-- Crop based on the image center & scale
function utils.crop(img, center, scale, res)
local l1 = utils.transform({1,1}, center, scale, res, true)
local l2 = utils.transform({res,res}, center, scale, res, true)
local pad = math.floor(torch.norm((l1 - l2):float())/2 - (l2[1]-l1[1])/2)
if img:nDimension() < 3 then
img = torch.repeatTensor(img,3,1,1)
end
local newDim = torch.IntTensor({img:size(1), l2[2] - l1[2], l2[1] - l1[1]})
local newImg = torch.zeros(newDim[1],newDim[2],newDim[3])
local height, width = img:size(2), img:size(3)
local newX = torch.Tensor({math.max(1, -l1[1]+1), math.min(l2[1], width) - l1[1]})
local newY = torch.Tensor({math.max(1, -l1[2]+1), math.min(l2[2], height) - l1[2]})
local oldX = torch.Tensor({math.max(1, l1[1]+1), math.min(l2[1], width)})
local oldY = torch.Tensor({math.max(1, l1[2]+1), math.min(l2[2], height)})
newImg:sub(1,newDim[1],newY[1],newY[2],newX[1],newX[2]):copy(img:sub(1,newDim[1],oldY[1],oldY[2],oldX[1],oldX[2]))
newImg = image.scale(newImg,res,res)
return newImg
end
function utils.getPreds(heatmaps, center, scale)
if heatmaps:nDimension() == 3 then heatmaps = heatmaps:view(1, unpack(heatmaps:size():totable())) end
-- Get locations of maximum activations
local max, idx = torch.max(heatmaps:view(heatmaps:size(1), heatmaps:size(2), heatmaps:size(3) * heatmaps:size(4)), 3)
local preds = torch.repeatTensor(idx, 1, 1, 2):float()
preds[{{}, {}, 1}]:apply(function(x) return (x - 1) % heatmaps:size(4) + 1 end)
preds[{{}, {}, 2}]:add(-1):div(heatmaps:size(3)):floor():add(1)
for i = 1,preds:size(1) do
for j = 1,preds:size(2) do
local hm = heatmaps[{i,j,{}}]
local pX, pY = preds[{i,j,1}], preds[{i,j,2}]
if pX > 1 and pX < 64 and pY > 1 and pY < 64 then
local diff = torch.FloatTensor({hm[pY][pX+1]-hm[pY][pX-1], hm[pY+1][pX]-hm[pY-1][pX]})
preds[i][j]:add(diff:sign():mul(.25))
end
end
end
preds:add(-0.5)
-- Get the coordinates in the original space
local preds_orig = torch.zeros(preds:size())
for i = 1, heatmaps:size(1) do
for j = 1, heatmaps:size(2) do
preds_orig[i][j] = utils.transform(preds[i][j],center,scale,heatmaps:size(3),true)
end
end
return preds, preds_orig
end
function utils.shuffleLR(x)
local dim
if x:nDimension() == 4 then
dim = 2
else
assert(x:nDimension() == 3)
dim = 1
end
local matched_parts = {
{1,6}, {2,5}, {3,4},
{11,16}, {12,15}, {13,14}
}
for i = 1,#matched_parts do
local idx1, idx2 = unpack(matched_parts[i])
local tmp = x:narrow(dim, idx1, 1):clone()
x:narrow(dim, idx1, 1):copy(x:narrow(dim, idx2, 1))
x:narrow(dim, idx2, 1):copy(tmp)
end
return x
end
function utils.flip(x)
local y = torch.FloatTensor(x:size())
for i = 1, x:size(1) do
image.hflip(y[i], x[i]:float())
end
return y:typeAs(x)
end
function utils.calcDistance(predictions,groundTruth)
local n = predictions:size()[1]
gnds = torch.Tensor(n,16,2)
for i=1,n do
gnds[{{i},{},{}}] = groundTruth[i].points
end
local dists = torch.Tensor(predictions:size(2),predictions:size(1))
-- Calculate L2
for i = 1,predictions:size(1) do
for j = 1,predictions:size(2) do
if gnds[i][j][1] > 1 and gnds[i][j][2] > 1 then
dists[j][i] = torch.dist(gnds[i][j],predictions[i][j])/groundTruth[i].headSize
else
dists[j][i] = -1
end
end
end
return dists
end
function utils.getFileList(opts)
local fileLists = {}
tempFileList = torch.load('dataset/mpii_dataset.t7')
if opts.mode == 'demo' then
local idxs = {1,5,16,17,18,24,28,63,66,104}
for i = 1, #idxs do
fileLists[i] = tempFileList[idxs[i]]
end
else
for i = 1, #tempFileList do
if tempFileList[i]['type'] == 0 then
fileLists[#fileLists+1] = tempFileList[i]
end
end
end
return fileLists
end
-- Requires gnuplot
function utils.plot(surface, points, size)
points = points:view(16,2)
local matched_parts = {
{1,2}, {2,3}, {3,7},
{4,5}, {5,6}, {4,7},
{9,10},{7,8},
{11,12}, {12,13}, {13,8},
{8,14}, {14,15}, {15,16}
}
local parts_colours = {
"blue", "blue", "blue",
"red", "red", "red",
"#9400D3", "#9400D3",
"blue", "blue", "blue",
"red", "red", "red"
}
gnuplot.figure(1)
gnuplot.raw("set size ratio -1")
gnuplot.raw("set xrange [0:"..size[1].."]")
gnuplot.raw("set yrange [0:"..size[2].."]")
gnuplot.raw("unset key; unset tics; unset border;")
gnuplot.raw("set multiplot layout 1,1 margins 0.05,0.95,.1,.99 spacing 0,0")
gnuplot.raw("plot '"..surface.."' binary filetype=jpg with rgbimage")
gnuplot.raw(" set yrange ["..size[2]..":0] ")
commands = {}
for i = 1, #matched_parts do
commands[i] = {torch.Tensor{points[matched_parts[i][1]][1],points[matched_parts[i][2]][1]},torch.Tensor{points[matched_parts[i][1]][2],points[matched_parts[i][2]][2]},'with lines lw 5 linecolor rgb "'..parts_colours[i]..'"'}
end
gnuplot.plot(unpack(commands))
gnuplot.raw("unset multiplot")
end
local function displayPCKh(dists, idxs, title, disp_key)
local xs = torch.linspace(0,0.5,30)
local ys = torch.zeros(xs:size(1))
local total = {dists[{idxs[1],{}}]:gt(-1):sum(),
dists[{idxs[2],{}}]:gt(-1):sum()}
for i = 1, xs:size(1) do
ys[i] = 0.5*((dists[{idxs[1],{}}]:lt(xs[i]):sum()-(dists:size(2)-total[1]))/total[1]+(dists[{idxs[2],{}}]:lt(xs[i]):sum()-(dists:size(2)-total[2]))/total[2])
end
local command = {xs,ys,'-'}
gnuplot.raw('set title "'..title..'"')
if not disp_key then
gnuplot.raw('unset key')
else
gnuplot.raw('set key font ",6" right bottom')
end
gnuplot.raw('set xrange [0:0.5]')
gnuplot.raw('set yrange [0:1]')
gnuplot.plot(unpack(command))
end
function utils.calculateMetrics(dists)
gnuplot.raw('set bmargin 1')
gnuplot.raw('set lmargin 3.2')
gnuplot.raw('set rmargin 2')
gnuplot.raw('set multiplot layout 2,3 title "MPII Validation (PCKh)"')
gnuplot.raw('set xtics font ",6"')
gnuplot.raw('set xtics font ",6"')
displayPCKh(dists, {9,10}, 'Head')
displayPCKh(dists, {2,5}, 'Knee')
displayPCKh(dists, {1,6}, 'Ankle')
gnuplot.raw('set tmargin 2.5')
gnuplot.raw('set bmargin 1.5')
displayPCKh(dists, {13,14}, 'Shoulder')
displayPCKh(dists, {12,15}, 'Elbow')
displayPCKh(dists, {11,16}, 'Wrist', true)
gnuplot.raw('unset multiplot')
local threshold = 0.5
dists:apply(function(x)
if x>=0 and x<= threshold then
return 1
elseif x>threshold then
return 0
end
end)
local count = torch.zeros(16)
local sums = torch.zeros(16)
for i=1,16 do
dists[i]:apply(function(x)
if x ~= -1 then
count[i] = count[i] + 1
sums[i] = sums[i] + x
end
end)
end
local partNames = {'Head', 'Knee', 'Ankle', 'Shoulder', 'Elbow', 'Wrist', 'Hip'}
local partsC = torch.Tensor({{9,10},{2,5},{1,6},{13,14},{12,15},{11,16},{3,4}})
print('PCKh results:')
for i=1,#partNames do
print(partNames[i]..': ',(sums[partsC[i][1]]/count[partsC[i][1]]+sums[partsC[i][2]]/count[partsC[i][1]])*100/2)
end
end
return utils