-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathisp_pipeline_mulitple_images.py
136 lines (103 loc) · 4.37 KB
/
isp_pipeline_mulitple_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
"""
This script is used to run isp_pipeline.py on a dataset placed in ./inframes/normal/data
It also fetches if a separate config of a raw image is present othewise uses the default config
"""
import os
from pathlib import Path
from tqdm import tqdm
from infinite_isp import InfiniteISP
from util.config_utils import parse_file_name, extract_raw_metadata
DATASET_PATH = "./in_frames/normal/data/"
CONFIG_PATH = "./config/configs.yml"
VIDEO_MODE = False
EXTRACT_SENSOR_INFO = True
UPDATE_BLC_WB = True
def video_processing():
"""
Processed Images in a folder [DATASET_PATH] like frames of an Image.
- All images are processed with same config file located at CONFIG_PATH
- 3A Stats calculated on a frame are applied on the next frame
"""
raw_files = [f_name for f_name in os.listdir(DATASET_PATH) if ".raw" in f_name]
raw_files.sort()
infinite_isp = InfiniteISP(DATASET_PATH, CONFIG_PATH)
# set generate_tv flag to false
infinite_isp.c_yaml["platform"]["generate_tv"] = False
infinite_isp.c_yaml["platform"]["render_3a"] = False
for file in tqdm(raw_files, disable=False, leave=True):
infinite_isp.execute(file)
infinite_isp.load_3a_statistics()
def dataset_processing():
"""
Processed each image as a single entity that may or may not have its config
- If config file in the dataset folder has format filename-configs.yml it will
be use to proocess the image otherwise default config is used.
- For 3a-rendered output - set 3a_render flag in config file to true.
"""
# The path for default config
default_config = CONFIG_PATH
# Get the list of all files in the DATASET_PATH
directory_content = os.listdir(DATASET_PATH)
# Get the list of all raw images in the DATASET_PATH
raw_images = [
x
for x in directory_content
if (Path(DATASET_PATH, x).suffix in [".raw", ".NEF", ".dng", ".nef"])
]
infinite_isp = InfiniteISP(DATASET_PATH, default_config)
# set generate_tv flag to false
infinite_isp.c_yaml["platform"]["generate_tv"] = False
is_default_config = True
for raw in tqdm(raw_images, ncols=100, leave=True):
raw_path_object = Path(raw)
config_file = raw_path_object.stem + "-configs.yml"
# check if the config file exists in the DATASET_PATH
if find_files(config_file, DATASET_PATH):
print(f"Found {config_file}.")
# use raw config file in dataset
infinite_isp.load_config(DATASET_PATH + config_file)
is_default_config = False
infinite_isp.execute()
else:
print(f"Not Found {config_file}, Changing filename in default config file.")
# copy default config file
if not is_default_config:
infinite_isp.load_config(default_config)
is_default_config = True
if EXTRACT_SENSOR_INFO:
if raw_path_object.suffix == ".raw":
print(
raw_path_object.suffix
+ " file, sensor_info will be extracted from filename."
)
sensor_info = parse_file_name(raw)
if sensor_info:
infinite_isp.update_sensor_info(sensor_info)
print("updated sensor_info into config")
else:
print("No information in filename - sensor_info not updated")
else:
sensor_info = extract_raw_metadata(DATASET_PATH + raw)
if sensor_info:
infinite_isp.update_sensor_info(sensor_info, UPDATE_BLC_WB)
print("updated sensor_info into config")
else:
print(
"Not compatible file for metadata - sensor_info not updated"
)
infinite_isp.execute(raw)
def find_files(filename, search_path):
"""
This function is used to find the files in the search_path
"""
for _, _, files in os.walk(search_path):
if filename in files:
return True
return False
if __name__ == "__main__":
if VIDEO_MODE:
print("PROCESSING VIDEO FRAMES ONE BY ONE IN SEQUENCE")
video_processing()
else:
print("PROCESSING DATSET IMAGES ONE BY ONE")
dataset_processing()