Skip to content

Latest commit

 

History

History
146 lines (132 loc) · 4.81 KB

312. Burst Balloons.md

File metadata and controls

146 lines (132 loc) · 4.81 KB

leetcode-cn Daily Challenge on July 19th, 2020.

leetcode Daily Challenge on December 13th, 2020.


Difficulty : Hard

Related Topics : Divide and ConquerDynamic Programming


Given n balloons, indexed from 0 to n-1. Each balloon is painted with a number on it represented by array nums.You are asked to burst all the balloons. If the you burst balloon i you will get nums[left] * nums[i] * nums[right] coins. Here left and right are adjacent indices of i. After the burst, the left and right then becomes adjacent.

Find the maximum coins you can collect by bursting the balloons wisely.

Note:

  • You may imagine nums[-1] = nums[n] = 1. They are not real therefore you can not burst them.
  • 0 ≤ n ≤ 500, 0 ≤ nums[i] ≤ 100

Example:

Input: [3,1,5,8]
Output: 167
Explanation: nums = [3,1,5,8] --> [3,5,8] -->   [3,8]   -->  [8]  --> []
             coins =  3*1*5      +  3*5*8    +  1*3*8      + 1*8*1   = 167

Solution

  • mine
    • Java
      • DP-- got from the discuss Runtime: 9 ms, faster than 56.54%, Memory Usage: 39.3 MB, less than 7.95% of Java online submissions
        // O(N^3)time
        // O(N^2)space
        public int maxCoins(int[] nums) {
            int n = nums.length;
            int[] t = new int[n + 2];
            t[0] = t[n + 1] = 1;
            for (int i = 1; i <= n; i++) {
                t[i] = nums[i - 1];
            }
            // i + 1 < j
            // dp[i][j] = Max(dp[i][k] + dp[k][j] +  t[i] * t[k] * t[j])
            // k is the last one to bursted
            int[][] dp = new int[n + 2][n + 2];
            for (int i = n - 1; i >= 0; i--) {
                for (int j = i + 2; j < n + 2; j++) {
                    for (int k = i + 1; k < j; k++) {
                        int sum = t[i] * t[j] * t[k];
                        sum += dp[i][k] + dp[k][j];
                        dp[i][j] = Math.max(dp[i][j], sum);
                    }
                }
            }
            return dp[0][n + 1];
        }
        
      • DP Bottom-Up Runtime: 6 ms, faster than 95.33%, Memory Usage: 37.2 MB, less than 75.29% of Java online submissions
        // O(N^3)time
        // O(N^2)space
        public int maxCoins(int[] nums) {
            int n = nums.length + 2;
            int[] update = new int[n];
            update[0] = update[n - 1] = 1;
            System.arraycopy(nums, 0, update, 1, n -2);
        
            //dp[i][j] is mean the cost of burst balloons in (i, j) not [i, j]
            int[][] dp = new int[n][n];
            for(int len = 2; len < n; len++){
                for(int i = 0; i + len < n; i++){
                    int j = i + len;
                    for(int k = i + 1; k < j; k++){
                        int sum = dp[i][k] + dp[k][j] +  update[i] * update[j] * update[k];
                        dp[i][j] = Math.max(dp[i][j], sum);
                    }
                }
            }
            return dp[0][n - 1];
        }
        

  • the most votes
  • Divide and Conquer & Memorization Runtime: 10 ms, faster than 42.68%, Memory Usage: 39.2 MB, less than 8.43% of Java online submissions

    // O(N^3)time
    // O(N^2)space
    public int maxCoins(int[] iNums) {
        int[] nums = new int[iNums.length + 2];
        int n = 1;
        for (int x : iNums) if (x > 0) nums[n++] = x;
        nums[0] = nums[n++] = 1;
    
    
        int[][] memo = new int[n][n];
        return burst(memo, nums, 0, n - 1);
    }
    
    public int burst(int[][] memo, int[] nums, int left, int right) {
        if (left + 1 == right) return 0;
        if (memo[left][right] > 0) return memo[left][right];
        int ans = 0;
        for (int i = left + 1; i < right; ++i)
            ans = Math.max(ans, nums[left] * nums[i] * nums[right]
                    + burst(memo, nums, left, i) + burst(memo, nums, i, right));
        memo[left][right] = ans;
        return ans;
    }
    
  • DP Runtime: 9 ms, faster than 56.54%, Memory Usage: 39.5 MB, less than 5.54% of Java online submissions

    // O(N^3)time
    // O(N^2)space
    public int maxCoins(int[] iNums) {
        int[] nums = new int[iNums.length + 2];
        int n = 1;
        for (int x : iNums) if (x > 0) nums[n++] = x;
        nums[0] = nums[n++] = 1;
    
    
        int[][] dp = new int[n][n];
        for (int k = 2; k < n; ++k)
            for (int left = 0; left < n - k; ++left) {
                int right = left + k;
                for (int i = left + 1; i < right; ++i)
                    dp[left][right] = Math.max(dp[left][right],
                      nums[left] * nums[i] * nums[right] + dp[left][i] + dp[i][right]);
            }
    
        return dp[0][n - 1];
    }