Skip to content

Latest commit

 

History

History
117 lines (93 loc) · 4.05 KB

174. Dungeon Game.md

File metadata and controls

117 lines (93 loc) · 4.05 KB

leetcode Daily Challenge on June 21th, 2020.

leetcode-cn Daily Challenge on July 12th, 2020.


Difficulty : Hard

Related Topics : Dynamic ProgrammingBinary Search


The demons had captured the princess (P) and imprisoned her in the bottom-right corner of a dungeon. The dungeon consists of M x N rooms laid out in a 2D grid. Our valiant knight (K) was initially positioned in the top-left room and must fight his way through the dungeon to rescue the princess.

The knight has an initial health point represented by a positive integer. If at any point his health point drops to 0 or below, he dies immediately.

Some of the rooms are guarded by demons, so the knight loses health (negative integers) upon entering these rooms; other rooms are either empty (0's) or contain magic orbs that increase the knight's health (positive integers).

In order to reach the princess as quickly as possible, the knight decides to move only rightward or downward in each step.

Write a function to determine the knight's minimum initial health so that he is able to rescue the princess.

For example, given the dungeon below, the initial health of the knight must be at least 7 if he follows the optimal path RIGHT-> RIGHT -> DOWN -> DOWN.

-2 (K) -3 3
5 -10 1
10 30 -5 (P)

Note:

  • The knight's health has no upper bound.
  • Any room can contain threats or power-ups, even the first room the knight enters and the bottom-right room where the princess is imprisoned.

Solution

  • mine
    • Java
      • Dynamic Programming TOP-DOWN

        Runtime: 1 ms, faster than 93.45%, Memory Usage: 39.4 MB, less than 32.38% of Java online submissions

        // O(r*c)time O(1)space
        // F(i,j) = Max(0, min(F(i + 1, j), F(i, j + 1)) - dungeon[i][j])
        public int calculateMinimumHP(int[][] dungeon) {
            int r, c;
            if (dungeon == null
                    || (r = dungeon.length) == 0
                    || (c = dungeon[0].length) == 0) {
                return 0;
            }
            dungeon[r - 1][c - 1] = Math.max(0, -dungeon[r - 1][c - 1]);
            for (int i = r - 1; i > 0; i--) {
                dungeon[i - 1][c - 1] = Math.max(0, dungeon[i][c - 1] - dungeon[i - 1][c - 1]);
            }
            for (int i = c - 1; i > 0; i--) {
                dungeon[r - 1][i - 1] = Math.max(0, dungeon[r - 1][i] - dungeon[r - 1][i - 1]);
            }
            for (int i = r - 1; i > 0; i--) {
                for (int j = c - 1; j > 0; j--) {
                    dungeon[i - 1][j - 1] = Math.min(dungeon[i][j - 1], dungeon[i - 1][j]) - dungeon[i - 1][j - 1];
                    dungeon[i - 1][j - 1] = Math.max(0, dungeon[i - 1][j - 1]);
                }
            }
            return dungeon[0][0] + 1;
        }
        

  • the most votes
    • Dynamic Programming

      Runtime: 2 ms, faster than 52.87%, Memory Usage: 39.2 MB, less than 45.11% of Java online submissions

      // O(m*n)time  O(m*n)space
      public int calculateMinimumHP(int[][] dungeon) {
          if (dungeon == null || dungeon.length == 0 || dungeon[0].length == 0) return 0;
      
          int m = dungeon.length;
          int n = dungeon[0].length;
      
          int[][] health = new int[m][n];
      
          health[m - 1][n - 1] = Math.max(1 - dungeon[m - 1][n - 1], 1);
      
          for (int i = m - 2; i >= 0; i--) {            
              health[i][n - 1] = Math.max(health[i + 1][n - 1] - dungeon[i][n - 1], 1);
          }
      
          for (int j = n - 2; j >= 0; j--) {
              health[m - 1][j] = Math.max(health[m - 1][j + 1] - dungeon[m - 1][j], 1);
          }
      
          for (int i = m - 2; i >= 0; i--) {
              for (int j = n - 2; j >= 0; j--) {
                  int down = Math.max(health[i + 1][j] - dungeon[i][j], 1);
                  int right = Math.max(health[i][j + 1] - dungeon[i][j], 1);
                  health[i][j] = Math.min(right, down);
              }
          }
          return health[0][0];
      }