the third one in Weekly Contest 207.
Difficulty : Medium
Related Topics : Dynamic Programming、Greedy
You are given a
rows x cols
matrixgrid
. Initially, you are located at the top-left corner(0, 0)
, and in each step, you can only move right or down in the matrix.Among all possible paths starting from the top-left corner
(0, 0)
and ending in the bottom-right corner(rows - 1, cols - 1)
, find the path with the maximum non-negative product. The product of a path is the product of all integers in the grid cells visited along the path.Return the maximum non-negative product modulo
10^9 + 7
. If the maximum product is negative return-1
.Notice that the modulo is performed after getting the maximum product.
Input: grid = [[-1,-2,-3], [-2,-3,-3], [-3,-3,-2]] Output: -1 Explanation: It's not possible to get non-negative product in the path from (0, 0) to (2, 2), so return -1.
Input: grid = [[1,-2,1], [1,-2,1], [3,-4,1]] Output: 8 Explanation: Maximum non-negative product is in bold (1 * 1 * -2 * -4 * 1 = 8).
Input: grid = [[1, 3], [0,-4]] Output: 0 Explanation: Maximum non-negative product is in bold (1 * 0 * -4 = 0).
Input: grid = [[ 1, 4,4,0], [-2, 0,0,1], [ 1,-1,1,1]] Output: 2 Explanation: Maximum non-negative product is in bold (1 * -2 * 1 * -1 * 1 * 1 = 2).
1 <= rows, cols <= 15
-4 <= grid[i][j] <= 4
- mine
- Java
- DP
Runtime: 1 ms, faster than 100.00%, Memory Usage: 39.4 MB, less than 25.00% of Java online submissions
// O(r * c)time // O(r * c)space public int maxProductPath(int[][] grid) { int r = grid.length, c = grid[0].length; long[][][] dp = new long[r][c][2]; int mod = 1000000007; dp[0][0][0] = dp[0][0][1] = grid[0][0]; for (int i = 1; i < r; i++) { dp[i][0][0] = Math.max(grid[i][0] * dp[i - 1][0][0], grid[i][0] * dp[i - 1][0][1]); dp[i][0][1] = Math.min(grid[i][0] * dp[i - 1][0][0], grid[i][0] * dp[i - 1][0][1]); } for (int i = 1; i < c; i++) { dp[0][i][0] = Math.max(grid[0][i] * dp[0][i - 1][0], grid[0][i] * dp[0][i - 1][1]); dp[0][i][1] = Math.min(grid[0][i] * dp[0][i - 1][0], grid[0][i] * dp[0][i - 1][1]); } for(int i = 1; i < r; i++){ for(int j = 1; j < c; j++){ long a = dp[i - 1][j][0] * grid[i][j]; long b = dp[i - 1][j][1] * grid[i][j]; long m = dp[i][j - 1][0] * grid[i][j]; long n = dp[i][j - 1][1] * grid[i][j]; long max = Math.max(Math.max(a, b), Math.max(m, n)); long min = Math.min(Math.min(a, b), Math.min(m, n)); dp[i][j][0] = max; dp[i][j][1] = min; } } long res = dp[r - 1][c - 1][0]; if(res < 0) return -1; return (int)(res % mod); }
- DP
- Java