-
Notifications
You must be signed in to change notification settings - Fork 140
/
rag_dynamic_tools.rs
179 lines (148 loc) · 4.93 KB
/
rag_dynamic_tools.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
use anyhow::Result;
use rig::{
completion::{Prompt, ToolDefinition},
embeddings::EmbeddingsBuilder,
providers::openai::{Client, TEXT_EMBEDDING_ADA_002},
tool::{Tool, ToolEmbedding, ToolSet},
vector_store::in_memory_store::InMemoryVectorStore,
};
use serde::{Deserialize, Serialize};
use serde_json::json;
use std::env;
#[derive(Deserialize)]
struct OperationArgs {
x: i32,
y: i32,
}
#[derive(Debug, thiserror::Error)]
#[error("Math error")]
struct MathError;
#[derive(Debug, thiserror::Error)]
#[error("Math error")]
struct InitError;
#[derive(Deserialize, Serialize)]
struct Add;
impl Tool for Add {
const NAME: &'static str = "add";
type Error = MathError;
type Args = OperationArgs;
type Output = i32;
async fn definition(&self, _prompt: String) -> ToolDefinition {
serde_json::from_value(json!({
"name": "add",
"description": "Add x and y together",
"parameters": {
"type": "object",
"properties": {
"x": {
"type": "number",
"description": "The first number to add"
},
"y": {
"type": "number",
"description": "The second number to add"
}
}
}
}))
.expect("Tool Definition")
}
async fn call(&self, args: Self::Args) -> Result<Self::Output, Self::Error> {
let result = args.x + args.y;
Ok(result)
}
}
impl ToolEmbedding for Add {
type InitError = InitError;
type Context = ();
type State = ();
fn init(_state: Self::State, _context: Self::Context) -> Result<Self, Self::InitError> {
Ok(Add)
}
fn embedding_docs(&self) -> Vec<String> {
vec!["Add x and y together".into()]
}
fn context(&self) -> Self::Context {}
}
#[derive(Deserialize, Serialize)]
struct Subtract;
impl Tool for Subtract {
const NAME: &'static str = "subtract";
type Error = MathError;
type Args = OperationArgs;
type Output = i32;
async fn definition(&self, _prompt: String) -> ToolDefinition {
serde_json::from_value(json!({
"name": "subtract",
"description": "Subtract y from x (i.e.: x - y)",
"parameters": {
"type": "object",
"properties": {
"x": {
"type": "number",
"description": "The number to substract from"
},
"y": {
"type": "number",
"description": "The number to substract"
}
}
}
}))
.expect("Tool Definition")
}
async fn call(&self, args: Self::Args) -> Result<Self::Output, Self::Error> {
let result = args.x - args.y;
Ok(result)
}
}
impl ToolEmbedding for Subtract {
type InitError = InitError;
type Context = ();
type State = ();
fn init(_state: Self::State, _context: Self::Context) -> Result<Self, Self::InitError> {
Ok(Subtract)
}
fn context(&self) -> Self::Context {}
fn embedding_docs(&self) -> Vec<String> {
vec!["Subtract y from x (i.e.: x - y)".into()]
}
}
#[tokio::main]
async fn main() -> Result<(), anyhow::Error> {
// required to enable CloudWatch error logging by the runtime
tracing_subscriber::fmt()
.with_max_level(tracing::Level::INFO)
// disable printing the name of the module in every log line.
.with_target(false)
.init();
// Create OpenAI client
let openai_api_key = env::var("OPENAI_API_KEY").expect("OPENAI_API_KEY not set");
let openai_client = Client::new(&openai_api_key);
let embedding_model = openai_client.embedding_model(TEXT_EMBEDDING_ADA_002);
let toolset = ToolSet::builder()
.dynamic_tool(Add)
.dynamic_tool(Subtract)
.build();
let embeddings = EmbeddingsBuilder::new(embedding_model.clone())
.documents(toolset.schemas()?)?
.build()
.await?;
// Create vector store with the embeddings
let vector_store =
InMemoryVectorStore::from_documents_with_id_f(embeddings, |tool| tool.name.clone());
// Create vector store index
let index = vector_store.index(embedding_model);
// Create RAG agent with a single context prompt and a dynamic tool source
let calculator_rag = openai_client
.agent("gpt-4")
.preamble("You are a calculator here to help the user perform arithmetic operations.")
// Add a dynamic tool source with a sample rate of 1 (i.e.: only
// 1 additional tool will be added to prompts)
.dynamic_tools(1, index, toolset)
.build();
// Prompt the agent and print the response
let response = calculator_rag.prompt("Calculate 3 - 7").await?;
println!("{}", response);
Ok(())
}